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Abstract

In this paper we use indirect inference to estimate a joint model of earnings, employment, job
changes, wage rates, and work hours over a career. We use the model to address a number of
important questions in labor economics, including the source of the experience profile of wages, the
response of job changes to outside wage offers, and the effects of seniority on job changes. We also
study the dynamic response of wage rates, hours, and earnings to various shocks and measure the
relative contributions of the shocks to the variance of earnings in a given year and over a lifetime.
We find that human capital accounts for most of the growth of earnings over a career although job
seniority and job mobility also play significant roles. Unemployment shocks have a large impact on
earnings in the short run as well as a substantial long-term effect that operates through the wage
rate. Shocks associated with job changes and unemployment make a large contribution to the
variance of career earnings and operate mostly through the job-specific error components in wages
and hours.



1 Introduction

In this paper we build and estimate a model of earnings. We have three main goals. The first

is to advance the literature in labor economics on how employment, hours, wages, and earnings

are determined over a career. We examine the effects of education, race, experience, employment

duration, job tenure and unobserved heterogeneity, employment shocks, shocks to general skills,

and draws of new job opportunities offering different hours and wages. We trace out the response

of wages, hours, and earnings to the various shocks and determine the channels through which

they operate. Our analysis addresses a number of long-standing questions in labor economics.

For example, we provide estimates of the relative importance of general skill accumulation, job

shopping, and job tenure for career wage growth and we quantify the specific channels through

which an exogenous employment shock affects the path of wage rates, hours, and earnings. We

study the effects of shocks on the future variance of earnings changes as well as on the average path.

Our second goal is to provide a comprehensive account of what causes inequality in earnings at

a point in time and over the lifetime. We measure the contribution of each of the various shocks,

permanent unobserved heterogeneity, and education to the variance in earnings, wages, and hours

over the course of a career.

Our third goal is to provide a richer model of earnings for use in studies of consumption and

saving as well as in dynamic stochastic general-equilibrium models that are a cornerstone of modern

macroeconomics and public finance. Such models have been used to study the distribution of

wealth, the costs of business cycles, asset pricing, and other important questions.1 The quantitative

implications of the calibrated theoretical models used in these lines of research depend on certain

key features of the earnings process, such as the degree of earnings uncertainty and the persistence

of earnings innovations.2

Almost all of the existing structural studies base their modeling and calibration choices for the

earnings process on the large empirical literature on univariate statistical models.3 Much has been

learned from this work. With only one indicator, however, even richly specified univariate models

cannot identify the various sources of earnings fluctuations, their relative importance, their dynamic

behavior, or the economics underlying how labor market outcomes are determined. Without such

information, it is diffi cult to think about the potential welfare consequences of specific sources of

1Examples include Huggett (1996), Krusell and Smith (1998), and Castañeda, Díaz-Giménez, and Ríos-Rull
(2003) on consumption and wealth, Krusell and Smith (1999), Storesletten, Telmer, and Yaron (2001) on the costs
of business cycles, and Krusell and Smith (1997), Storesletten, Telmer, and Yaron (2007) on asset pricing.

2See, for example, Deaton (1991), Krusell and Smith (1997), Guvenen (2007), and the discussion in Blundell,
Pistaferri and Preston (2008).

3Key early contributions include Lillard and Willis (1978), Lillard and Weiss (1979), and MaCurdy (1982). More
recent contribution include Baker (1997), Haider (2001), Baker and Solon (2003), Guvenen (2007), and Meghir and
Pistaferri (2004). The latter paper introduces ARCH shocks.

1



variation or of policies such as unemployment insurance, employment regulations, wage subsidies,

or earned income tax credits that insure against particular types of shocks to income. Further-

more, the innovations in the univariate representation of a multivariate time series process may be

aggregates of current and past shocks in the multivariate representation. This will lead to mistakes

in characterizing what the surprises to the agent are even under the assumption that the agent’s

information set is the same as the econometrician’s.

Only a few studies of earnings dynamics have considered multivariate models. These include

Abowd and Card’s (1987, 1989) analyses of hours and earnings, and Altonji, Martins, and Siow’s

(2002) second order vector moving average model of the first difference in consumption, family

income, earnings, hours, wages, and unemployment. The models that we consider, in contrast to

those mentioned above, incorporate discrete events such as job changes, employment loss, interac-

tions between job changes and wages, and effects of these discrete events on the variance of wage

and hours shocks.4

There are two distinct paths that one might take in formulating a multivariate model of earnings.

The first approach is the development of a statistical model of the process with little attention to

an underlying theory of household decisions and constraints. This approach is in the spirit of the

literature on univariate earnings processes, but the absence of theory limits what one can learn

about how earnings are determined. The second approach is to develop a model that is based on

lifetime utility maximization. Grounding the model of the income process in a utility maximization

framework provides a foundation for using the results to analyze policies when earnings are partially

endogenous. The main disadvantage is the diffi culty of specifying and estimating a model that

incorporates labor supply choices, job search decisions, hours constraints, voluntary separations,

and involuntary job changes. Indeed, we do not know of any papers that have studied work hours

and employment using a lifecycle utility maximization model that incorporates job-specific hours

constraints, let alone job mobility decisions.5 Estimation of a structural model that is as rich as the

one that we work with would require solving an intertemporal model of job search, labor supply (in

the presence of hours constraints), and savings as part of the estimation strategy and is probably

out of reach at the present time from a computational point of view. Low, Meghir, and Pistaferri

(2010) take a major step in this direction by studying earnings risk and social insurance in the

context of an intertemporal model of consumption, employment participation, wages, and mobility.

They work with a simpler model of the earnings process than we do, but are able to measure welfare

costs of the risk associated with innovations in the persistent wage component, an employer-specific

4A number of recent studies provide structural models of wage rates, job mobility, and employment dynamics,
including Barlevy (2008), Buchinsky et al (2010), and Bagger et al (2011), who provide references to a few additional
studies. Wolpin (1992) is an early effort. We discuss the evidence below.

5Ham and Reilly (2002) test for hours restrictions in an intertemporal labor supply framework. Blundell and
MaCurdy (1999) survey the labor supply literature.

2



wage component, and job loss and unemployment. Our study is complementary to theirs.

Although our model falls short of a fully specified behavioral model, the equations can be

viewed as approximations to the decision rules relating choices to state variables that would arise

in a structural model based on lifetime utility maximization. The parameters of the rules depend

on an underlying set of "deep" parameters that characterize labor supply preferences, job search

technology, etc. The class of models that we consider is rich enough to address a number of core

questions in labor economics, but tractable enough to be used in place of univariate income models

that dominate the literature on savings, portfolio choice, etc. Furthermore, it provides a natural

path to future analyses that include other important economic risks that individuals face, including

changes in family structure through marriage, divorce, and the death of a spouse.

We estimate the model using data on male household heads from the Panel Study of Income

Dynamics (PSID). Given the presence of interactions among discrete and continuous variables,

unobserved heterogeneity and state dependence in multiple equations, measurement error, and a

highly unbalanced sample, conventional maximum likelihood and method of moments approaches

are not feasible. For this reason, we use indirect inference (henceforth I-I), which is one of a family

of simulation-based approaches to estimation that involve comparing the distribution of artificial

data generated from the structural model at a given set of parameter values to features of the actual

data.6 We use the smoothing procedure suggested by Keane and Smith (2003), which allows us to

use gradient-based numerical optimization methods in the presence of both discrete and continuous

endogenous variables. Estimation of our model is not straightforward, and a secondary contribution

of our research is to explore the feasibility and performance of I-I in large models with a mix of

discrete and continuous variables.7

Our main results are as follows. First, education, race, and the two forms of unobserved per-

manent heterogeneity play an important role in employment transitions and job changes. Second,

consistent with most of the large literature on the labor supply of male household heads, wages

have only a small effect on employment and on annual work hours. Third, even after accounting

for unobserved individual heterogeneity and job-specific heterogeneity, we find a strong negative

tenure effect on job mobility, particularly for less educated workers. Fourth, consistent with job

search theory, job changes are induced by high outside offers and deterred by the job-specific wage

component of the current job.

Fifth, unemployment at the survey date is associated with a large decline of .6 log points in

annual earnings. About two thirds of the reduction is due to work hours, which recover almost

6 The method was introduced, under a different name, in Smith (1990, 1993) and extended by Gourieroux,
Monfort, and Renault (1993) and Gallant and Tauchen (1996). It is closely related to the simulated method of
moments.

7Other recent papers that apply I-I to panel data include Bagger et al (2011) and Nagypal (2007).
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completely after one year. The other third is due to a decline of .2 in the log hourly wage rate. Lost

tenure and a drop in the job-specific wage component contribute .06 and .02, respectively, to the

wage reduction. The wage recovers by about .02 in the first year and more slowly after that.

Sixth, wages do not contain a random walk component but are highly persistent. The persistence

is the combined effect of permanent observed and unobserved heterogeneity, the job-specific wage

component, which depends positively on offers in previous jobs, and strong persistence in a stochastic

component representing the value of the worker’s general skills.

Seventh, shocks leading to unemployment or to job changes have large effects on the variance

as well as the mean of earnings changes. Eighth, job shopping, the accumulation of tenure, and the

growth in general skills account for log wage increases of .13, .11, and .59, respectively, over the

first thirty years in the labor market.

Finally, the variance decompositions depend somewhat on the education subgroup, model spec-

ification and assumptions about measurement error, but in all cases we find that job mobility and

unemployment play a key role in the variance of career earnings. For our main specification, the

job-specific hours and wage components, unemployment shocks, and job shocks together account

for 43.5%, 53.5%, and 59.2% of the variance in lifetime earnings, wages, and hours, respectively.

Job-specific wage shocks are more important than job-specific hours shocks for earnings. Job-specific

wage shocks dominate for wages, with employment shocks also playing a substantial role. For hours,

job-specific hours shocks dominate. Education accounts for about 30% of the variance in lifetime

earnings and wages but makes little difference for hours. Variables determined by the first year

of employment including unobserved heterogeneity, education and the initial draws of the general

skill and job-specific wage components collectively account for 54.9% for lifetime earnings, 44.8% for

lifetime wages and 39.1% for lifetime hours in the full sample, although these values differ somewhat

across model specifications.

The paper continues in section 2, where we present the earnings model. In section 3 we discuss

the data, which are drawn from the Panel Study of Income Dynamics (PSID) and in section 4 we

discuss estimation. Section 5 contains the main results, beginning with a discussion of the parameter

estimates and then turning to an analysis of the fit of the model, impulse response functions to

various shocks, and variance decompositions. In Section 6, we briefly discuss results for whites by

education level. In Section 7, we present an alternative model of employment transitions and job

mobility. We conclude with a summary our main findings and a research agenda.

2 A Model of Earnings Dynamics

We use two models in the paper, which we refer to as the baseline model and the multinomial

model. They differ only in the specification of the equations governing transitions from employment
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to unemployment and job changes. The main features of the models are as follows. Labor market

transitions, wages, and hours depend on three exogenous variables– race, education, and potential

experience– as well as on two permanent unobserved heterogeneity components. The unobserved

heterogeneity components can be labelled, loosely speaking, “unobserved productivity or ability”

and “propensity to move”. A typical worker enters the labor market after leaving school and receives

initial draws of an employment status shock that determines employment and an autoregressive

wage component capturing part of “general productivity” that has the same value in all jobs.

The worker also draws an initial job-specific wage component and an initial job-specific hours

component. There is state dependence in the value of the current job relative to unemployment

and in the value of the current job relative to an alternative job. Consequently, there is state

dependence in both employment and job-to-job transitions. Each period an unemployed worker

receives an unemployment transition shock. An employed worker receives a shock to the value

of the current job, a shock affecting the value of moving, and a draw of the job-specific wage

component for the new job. If the worker remains employed from one period to the next, then

whether the worker changes jobs depends on the draw of the job-specific wage component for

the new job, the current job-specific wage component, potential experience, job seniority, the two

permanent heterogeneity terms and an i.i.d. shock. A typical worker’s wage depends on one

of the heterogeneity terms (ability), the autoregressive general-productivity component, the job-

specific wage component, potential experience, and seniority. Unemployment spells reduce the

autoregressive general-productivity component, and workers draw new job-specific wage and hours

components when they leave unemployment. Annual hours depend on employment status, the

heterogeneity terms, the wage, and a job-specific hours component that is identical across jobs.

Finally, earnings are determined by wages and hours.

2.1 Equations of the Models

A word about notation first. The subscript i, which we sometimes suppress, refers to the individual.

The variable ti is potential years of labor market experience of i for a particular observation. We

sometimes refer to it as "time" even though it is potential experience rather than calendar time,

and usually suppress the i subscript.8 The subscript j(t) refers to i′s job at t. The notation

j(t) makes explicit the fact that individuals may change jobs. In particular, j(t) 6= j(t − 1) if i

experiences a job change without being unemployed at either t or t− 1 or if i is employed at t but

was unemployed at t − 1. The γ parameters refer to intercepts and to slope coeffi cients. For each

intercept and slope parameter the superscripts identify the dependent variable. The subscripts of

8Wages, hours, and earnings are net of economy-wide year effects which we remove using a regression procedure
discussed in section 4.
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slope parameters identify the explanatory variable. We use δ to denote coeffi cients on the fixed

person-specific unobserved heterogeneity components µi and ηi, the job-match wage component

υij(t), and the job-specific hours component ξij(t). The superscripts for the δ parameters denote

the dependent variable and the subscripts µ and η identify the heterogeneity component. We use

ρ with appropriate subscripts to denote autoregression coeffi cients. The εkit are i.i.d. N(0, σ2k)

random variables where k corresponds to the dependent variable affected directly by εkit. In what

follows, we focus our discussion on the baseline model.

2.1.1 Log Wages

The log wage rate wageit is determined by the following system of equations:

wageit = Eitwage
lat
it(1)

wagelatit = [Xitγ
w
X + γwt3t

3] + P (TENit)γ
w
TEN + δwµµi + ω

it
+ υij(t)(2)

ω
it

= ρωωi,t−1 + γω1−Et(1− Eit) + γω1−Et−1(1− Ei,t−1) + εωit(3)

υij(t) = (1− Sit)υij(t−1) + Sitυ
′
ij′(t)(4)

υ′ij′(t) = ρυυij(t−1) + ευij(t)(5)

Equation (1) says that for employed individuals (i.e. Eit = 1), wageit equals the “latent wage”

wagelatit . For an unemployed individual wage
lat
it captures the process for wage offers. At a given

point in time the individual might not have such an offer. The formulation parsimoniously captures

the idea that worker skills and worker-specific demand factors evolve during an unemployment spell.

It allows us to deal with the fact that wages are only observed for jobs that are held at the survey

date.

Equation (2) states that wagelatit depends on five components. The first is Xitγ
w
X + γwt3t

3, where

Xit is a vector of exogenous variables consisting of the race indicator BLACKi, years of education

EDUCi, a quadratic in t, and a constant, and t3 is the cube of experience. Since we control for

both tenure effects and gains from job shopping, the effect of t is a general human capital effect

and/or and aging effect. The second term P (TENit) consists of the first four powers of employer

tenure, TENit. The third term is the unobserved ability component µi
The fourth term is a stochastic component ωit, which according to (3) depends on ωi,t−1, the

current value and the first lag of unemployment (1 − Eit), and the error component εωit. The

dependence of ωit on its past reflects persistence in the market value of the general skills of i and/or

the fact that employers base wage offers on past wages.

The fifth wage component is the job-match-specific term υij(t). Each period individuals are

assigned a potential offer from an alternate job j′ with job-specific component υ′ij′(t). Its value
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depends on υij(t−1) and the shock ευij(t) as specified in (5). When agents leave unemployment or

move from job to job without unemployment, υij(t) becomes υ′ij′(t). Growth in υij(t) with experience

and with job mobility is endogenously determined through the influence of υij(t−1) and υ′ij′(t) on

mobility, as we discuss momentarily. In standard search models with exogenous offer arrivals, the

job-specific component of the offer, υ′ij′(t), does not depend on υij(t−1), although accepted offers υij(t)

do. In such models the correlation between accepted offers υij(t) and υij(t−1) arises only because the

reservation wage is a positive function of υij(t−1). Nevertheless, we also allow offers υ′ij′(t) to depend

directly on υij(t−1) through the parameter ρυ, for three reasons. The first is that employers may

base offers to prospective new hires in part on wages in the prior firm, including the firm-specific

component. Bagger et al. (2011), building on Postel-Vinay and Robin (2002) and Postel-Vinay and

Turon (2010), is one of a few recent papers in which outside firms tailor offers to surplus in the

current job. This surplus will be related to υij(t−1) to the extent that υij(t−1) is the worker’s portion

of a job-specific productivity component. In contrast to those papers, however, we do not allow

the current employers to change υij(t−1) in response to outside offers. (Wages do change with ωit.)

The second reason υ′ij′(t) depends on υij(t−1) is that υij(t−1) is not likely to be entirely job-specific

in the presence of demand shocks affecting jobs in a narrowly defined industry, occupation, and

region. The third is that the network available to an individual may be related to the quality of

the job that he is in. As it turns out, our estimates of ρv are large– about .70.
9 We were not

successful in limited experimentation with estimating models in which the link between υij(t) and

υij(t−1) when agents move from job to job without unemployment (JCit = 1) differs from the link

following unemployment, although standard job search models with exogenous layoffs imply that it

should.

2.1.2 Employment Transitions (EEt) and Job Changes (JCt), Baseline Model

The dummy EEit indicates whether a worker who was employed in t− 1 remains employed. In the

baseline model it is determined by

EEit = I[Xi,t−1γ
EE
X + γEEED min(EDi,t−1, 9) + γEETENTENit−1 + γEEws wage

s

it(6)

+δEEµ µi + δEEη ηi + εEEit > 0] given Ei,t−1 = 1,

where I(·) is the indicator function, EDi,t−1 is lagged employment duration and is determined

endogenously by EDit = Eit(EDi,t−1 + 1), and wage
s

it is what the wage would be in t if the

9Industry-specific and/or occupation-specific human capital are not accounted for in the model and are likely to
influence estimates of ρυ more than ρω, given that industry and occupation changes tend to occur across employers.
They would also affect the estimates of the return to seniority that we import from Altonji and Williams (2005). See
Neal (1995), Parent (2000), and Kambourov and Manovskii (2009) for somewhat conflicting evidence on the impor-
tance of occupation-specific, industry-specific, and firm-specific human capital. Extending the model to distinguish
occupation and/or industry is conceptually straightforward but would require modeling of occupation and industry
transitions and attention to measurement error. We leave this to future work.
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individual were to continue employment in the job held at t − 1. The variable wage
s

it is the value

of wagelatit determined by (2,3,4) with Eit = 1, Eit−1 = 1, TENit = TENit−1 + 1 and Sit = 1. The

vector Xi,t−1 is the same as Xit except that it contains (t− 1) and (t− 1)2 rather than t and t2. In

the econometric work, we exclude TENi,t−1 because in simulation experiments for this specification

we had trouble distinguishing the effects of TENi,t−1 and EDi,t−1. Standard labor supply models

imply that employment at t should depend on the current wage opportunity, which we proxy with

wagesit. EEit also depends on the permanent ability component µi as well as the hours preference

and mobility component ηi (“propensity to move”). Both µi and ηi also directly affect transitions

out of unemployment, job changes, and work hours, but ηi is excluded from the wage model. One

may think of ηi as a factor that is related to labor supply and to job and employment mobility

preferences but not productivity.

The job change equation, conditional on remaining employed, is

JCit = I[Xi,t−1γ
JC
X + γJCTENTENi,t−1 + δJCυ′j′(t)υ

′
ij′(t) + δJCυj(t−1)υij(t−1)(7)

+δJCµ µi + δJCη ηi + εJCit > 0] given Eit = Ei,t−1 = 1

Standard job search and job matching models predict a negative coeffi cient on υij(t−1), since higher

values of the job-match component of the current job should reduce search activity and raise the

reservation wage. In the model each worker is assigned a potential draw of υ′ij′(t) based on (5), which

we discuss momentarily. Search models predict a positive coeffi cient on υ′ij′(t), but the magnitude

should depend on the probability that the worker actually receives the offer. That is, the relative

magnitudes of the two coeffi cients should depend on offer arrival rates and need not be equal.10

We include TENi,t−1 as well as (t− 1) because models of firm-financed or jointly financed specific

capital investment suggest that it will play a role, and the decline in separation rates with TENi,t−1

in cross section data is very strong. However, little is known about how much of the association

between TENi,t−1 and JCit is causal because of the diffi culty of distinguishing state dependence

from the individual heterogeneity (µ and η) and job-match heterogeneity (υ) in dynamic discrete

choice models, particularly when data are missing on early employment histories for most sample

members. Indeed, Buchinsky et al. (2010) is the only other study that we know that accounts

for both individual and job-specific heterogeneity and deals with initial conditions problems when

estimating the effects of TEN and t on job changes.11

10One could introduce parameters corresponding to fixed offer arrival rates for employed workers and for un-
employed workers into the model and add the value of υ′ij′(t) into the unemployment equation. Low et al (2010)
work with such a specification. In our job change equation, υij(t−1) may reduce mobility both because it raises the
reservation wage and because it lowers search intensity.
11Buchinsky et al (2010) also find negative effects in a simultaneous model of wages, employment, and job changes.

Farber (1999) discusses models of the effect of tenure on mobility and surveys the empirical evidence. He presents
evidence showing a negative effect of tenure when one uses prior mobility as a control for individual heterogeneity.
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In this model of employment transitions and job changes, the main distinction is between job

changes from employment and job changes that involve unemployment. We believe that this is the

most important distinction for the determination of wages and annual work hours. Equation (6)

determines whether a worker who was employed in t − 1 has an employment option that is better

than unemployment, while (7) determines whether that option is a new job or the old job. Given

the sequential structure, the probability that JCit = 1|Ei,t−1 = 1 depends on the variables that

appear in (6) as well as (7), including the current wage wagesit and EDi,t−1.

In Section 7 and Web Appendix B we present a multinomial formulation of employment and

job transitions consisting of equations for the value of staying with the current employer relative

to unemployment and the value of moving to a new employer relative to unemployment. In some

respects, we prefer the multinomial formulation, but it is less well behaved numerically. This poses

problems when we move to education subgroups, particularly with respect to the feasibility of

bootstrapping. Consequently, we rely primarily on the baseline model. Most of the results about

earnings dynamics are not sensitive to the choice between the two models.

2.1.3 Unemployment to Employment Transition (UEt):

Movement from unemployment to employment is determined by

(8) UEit = I[Xi,t−1γ
UE
X + γUEUDUDi,t−1 + δUEµ µi + δUEη ηi + εUEit > 0] given Ei,t−1 = 0,

where UDi,t−1 is the number of years unemployed at the survey date and UDit = (1−Eit)(UDi,t−1+

1). Because there are relatively few multi-year unemployment spells, we end up restricting γUEUD to

0 in the empirical work. We experimented with specifications containing the lagged latent wage

rate or the expected value of the period t wage but had diffi culty pinning down the effects of

these variables, perhaps because we observe relatively few unemployment spells. We do include the

heterogeneity components µi and ηi.

Note that Eit is given by

Eit = EEit ∗ Ei,t−1 + UEit ∗ (1− Ei,t−1).

2.1.4 Log Annual Hours

Log annual work hours are determined by

(9) hoursit = Xitγ
h
X + γht3t

3 + (γhE + ξij(t))Eit + γhwwage
lat
it + δhµµi + δhηηi + εhit

The hoursit equation includes Xit and t3. It also includes ηi, µi, and the product of the job-specific

hours component ξij(t) and Eit. We include ξij(t) because there is strong evidence that work hours are
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heavily influenced by a job-specific component. This component presumably reflects work schedules

imposed by employers.12 A new value of ξij(t) is drawn when individuals take a new job. The i.i.d.

error component εhit picks up transitory variation in straight time hours worked, overtime, multiple

job holding, and unemployment conditional on employment status at the survey. It may reflect

temporary shifts in worker preferences as well as hours constraints.

Hours also depend on wagelatit and Eit. For most observations, wage
lat
it is the actual wage. How-

ever, many individuals who are unemployed at the survey date work part of the year. For these

individuals wagelatit is the wage the individual would typically receive. Because wage shocks turn

out to be highly persistent and because we strongly question the standard labor supply assumption

that individuals are free to adjust hours on their main job in response to short term variation in

wage rates, we regard the coeffi cient on the latent wage as the response to a relatively permanent

wage change rather than the Frisch elasticity.

2.1.5 Log earnings

earnit = γe0 + γewwage
lat
it + γehhoursit + eit(10)

eit = ρeei,t−1 + εeit

Log earnings earnit depends on wagelatit and hoursit. The coeffi cients γ
e
w and γ

e
h might differ from

1 for a number of reasons, including overtime, multiple job holding, bonuses and commissions, job

mobility, and the fact that for some salaried workers the wage reflects a set work schedule but

annual hours worked may vary. Note that Xit is excluded but influences earnings through wagelatit
and hoursit. We also include a first-order autoregressive error component eit to capture some of

these factors. In previous drafts of the paper we freely estimated γew and γ
e
h and obtained values

very close to 1 for some more restrictive specifications of the model than the one we use here. For

richer versions of the model it is helpful to restrict the coeffi cients to be 1, which we do below.

2.1.6 Error Components and Initial Conditions:

The fixed person-specific error components µi and ηi are N(0, 1), iid across i, independent of each

other, and independent of all transitory shocks and measurement errors. Without loss of generality

we impose the sign normalizations δwµ > 0 and δJCη > 0.

The job-match hours component ξij(t) and the innovation ε
υ
it in equation (5) are N(0, σ2ξ) and

N(0, σ2υ), respectively. The shocks ε
h
it, ε

ω
it, and ε

e
it are N(0, σ2k), where k = h, ω, and e. The shocks

εEEit , εUEit , ε
JC
it are N(0, 1). They are i.i.d. across i and t and independent from one another.

12For evidence see Altonji and Paxson (1986) and Blundell et al (2008).
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The initial conditions are

Employment : Ei1 = I[b0g + δEEµ µi + δEEη ηi + εEEi1 > 0](11)

Wages : wagelati1 = Xi1γ
w
X + γwt3 + δwµµi + ω

i1
+ υij(1)(12)

General productivity : ωi1 ∼ N(0, σ2ω1,g)

Wage job match : υij(1) ∼ N(0, σ2υ1)

Earnings error : ei1 ∼ N(0, σ2e)

Other initial conditions : TENi1 = 0, EDi1 = Ei1, UDi1 = 1− Ei1, JCi1 = 0.

The random components ωi1, υij(1), and ei1 are mutually independent and independent of the

shocks in the model. The intercept b0g of the initial employment condition and the variance of initial

wages σ2ω1,g depend on the race-education group g, where the groups are defined by (BLACK &

EDUC ≤ 12), (BLACK & EDUC > 12), (not BLACK & EDUC ≤ 12), and (not BLACK &

EDUC > 12).

2.1.7 Measurement Error and Observed Wages, Hours, and Earnings:

The observed (measured) variables are:

wage∗it = Eit(wage
lat
it +mw

it)(13)

hours∗it = hoursit +mh
it(14)

earn∗it = earnit +me
it(15)

The measurement errors mw
it, m

h
it, m

e
it are N(0, σ2mτ ), τ = w, h, e, i.i.d. across i and t, mutually

independent, and independent from all other errors components in the model.

2.2 Additional Discussion of the Model

When interpreting results for EEit and JCit, one must keep in mind that our employment indicator

refers to the survey date. We undoubtedly miss short spells of unemployment that fall between

surveys. Due to data limitations, we cannot tell whether a person has changed jobs between surveys

only once or multiple times. Furthermore, if a person is employed at t− 1, unemployed for part of

the year, and employed in a new job at t, we would count this as a job-to-job change even if, for

example, the job change is due to a layoff into unemployment. A relatively simple alternative would

be to make use of information on the number of weeks that the individual was unemployed during

the year. However, one would want to distinguish between short spells of unemployment that are

associated with temporary layoffs with the strong expectation of recall and unemployment spells

11



due to a permanent layoff. This is possible only at the survey date. Fortunately, earnings depend on

employment through annual work hours and the transitory error component in the hours equation

should capture the effect on hours of unemployment spells of varying duration. The 25th, 50th,

75th, and 90th percentiles of hours of unemployment are 160, 688, 1080, and 1560 when Eit = 0

and 0, 0, 0, and 80 when Eit = 1.13

We have not considered models with an ARCH error structure. However, the model implies that

the variance of wage, hours, and earnings changes are state dependent and also depend on t. This

is because the odds of a job change and an unemployment spell depend on TEN, ED, t, and υij(t)

and because job changes and unemployment spells are associated with innovations in υij(t), ξij(t)
and ωit.14 The variances also depend on the permanent components of Xit (education and race)

and on the unobserved heterogeneity components µi and ηi.

3 Data

We use the 1975-1997 waves of the PSID to assemble data that refers to the calendar years 1975-

1996. We use the stratified random sample (SRC), but also include nonsample members who

married PSID sample members.15 The sample is restricted to single or married male household

heads. We present estimates for the full sample, and for whites by education level.

Observations for a given person-year are used if the person is between age 18 and 62, was working,

temporarily laid off, or unemployed at the survey date in a given year, was not self-employed, had

valid data on education (EDUC) and had no more than 40 years of potential experience. We treat

persons on temporary layoff as employed. We eliminate a small number of observations in which

the individual reports being retired, disabled, a housewife, a student, or "other". (See Appendix

Table 1 and Appendix Table 2).16

Potential experience ti is ageit−max(EDUCi, 10)−5. BLACKi is one if the individual is black

and 0 otherwise. EDit is the number of years in a row that a person is employed at the survey date.

In 1975 and for persons who joined the sample after 1975, we set EDit to tenure with the current

employer.17

13 This calculation excludes years after 1993 because the edited hours of unemployment variable is not available
for later years. We could have specified the model on a quarterly or monthly basis.
14An earlier draft of this paper, Altonji, Smith, and Vidangos (2009), henceforth ASV presents results for an

alternative model (Model B) that excludes υij(t) but allows the variance of the shocks εωit to depend on whether the
person is starting a new job.
15In ASV (2009), we report similar results for the baseline model using the combined SRC and SEO samples. The

SEO sample consists primarily of households that were low income in 1968 and substantially overrepresents blacks.
16We allow persons to come out of retirement and include future observations following a retirement spell if the

individual is working, temporarily laid off or unemployed. The percentage of the PSID sample who report their
employment status in a given year as disabled is 1.2.
17An alternative would be to apply exactly the same censoring that occurs in the PSID in the simulated data. In

the simulated data EDit would be set to tenure when t in the simulated case is equal to t for the first value we see
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The variable UDi,t−1 is the number of consecutive years up to t− 1 that the individual has not

been employed at the survey date. We set UDi,t−1 to 0 if the first time we observe i is in year

t. Few unemployment spells exceed 1 year, so the error is probably small. The wage measure is

the reported hourly wage rate at the time of the survey. It is only available for persons who are

employed or on temporary layoff.18

Finally, we censor reported hours at 4000, add 200 to reported hours before taking logs to reduce

the impact of very low values of hours on the variation in the logarithm, and censor observed earnings

and observed wage rates (in levels, not logs) to increase by no more than 500% and decrease to no

less than 20% of their lagged values. We also censor wages to be no less than $3.50 in year 2000

dollars.

We restrict the sample to individuals who are observed for at least three years because many of

the key equations in the auxiliary model involve lags. The sample contains 2,712 individuals who

contribute a total of 31,330 person-year observations. The sample is highly unbalanced.19 As we

have already noted, an advantage of indirect inference is that by incorporating the sample selection

process into the simulation, one can handle unbalanced data. We assume that observations are

missing at random, although there is reason to believe that the heterogeneity components and

shocks influence attrition from the sample.20

In Table 1 we present the mean, standard deviation, minimum and maximum of the key variables

in our baseline sample. The mean of Eit is .966, so we observe relatively few unemployment spells.

Note also that the mean of EEit is .975. Given these magnitudes, even relatively large movements

in the latent variable index determining EEit have only a small effect on whether EEit is 1 or 0.

in the corresponding PSID case.
18This measure is the log of the reported hourly wage at the survey date for persons paid by the hour and is based

on the salary per week, per month, or per year reported by salary workers. It is unavailable prior to 1970 and is
limited to hourly workers prior to 1976. We account for the fact that it is capped at $9.98 per hour prior to 1978 by
replacing capped values for the years 1975-1977 with predicted values constructed by Altonji and Williams (2005).
They are based on a regression of the log of the reported wage on a constant and the log of annual earnings divided
by annual hours using the sample of individuals in 1978 for whom the reported wage exceeds $9.98.
19Each individual contributes between 3 and 22 observations. The 5th, 25th, median, 75th, and 95th percentile

values of the number of observations a given individual contributes are 4, 7, 11, 16, 21. The number of observations
per year varies from 702 in 1975 to 1,571 in 1993 and exceeds 1,100 in all years except 1975.
20 In principle, one could augment the model with an attrition equation. Alternatively, it would be straightforward

to simply use sample weights to reweight the PSID when evaluating the likelihood function of the auxiliary model
if suitable weights were available. However, PSID sample weights are designed to keep the data representative of
successive cross sections of the US population that originate in the families present in the base year. They do not
adjust for factors that alter the US population, such as differences in birth rates by race or education. Furthermore,
there are no sample weights for persons who move into PSID households through marriage. Consequently, we do not
use weights.
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4 Estimation Methodology

We begin with a brief overview of our estimation procedure. We then define the auxiliary model

used in the estimation procedure as well as additional moment conditions that we use.21

4.1 Indirect Inference (I-I)

For clarity, we will refer to the model presented in Section 2 as the “structural”model, even though

the model does not express the parameters of the decision rules for EE, UE, JC, etc., in terms

of preference parameters and parameters governing job search, mobility, and exogenous layoffs. We

denote the k “structural”parameters by β. Indirect inference involves the use of an “auxiliary”

statistical model that captures properties of the data. This auxiliary model has p ≥ k parameters

θ. The method involves simulating data from the structural model (given a hypothesized value of

β) and choosing the estimator β̂ of β to make the simulated data match the actual data as closely

as possible according to some criterion that involves θ.

Let the observed data consist of a set of observations on N individuals in each of T periods:

{yit, xit}, i = 1, . . . , N , t = 1, . . . , T , where yit is endogenous to the model and xit is exogenous.

The auxiliary model parameters θ can be estimated using the observed data as the solution to:

θ̂ = arg max
θ
L(y;x, θ),

where L(y;x, θ) is the likelihood function associated with the auxiliary model, y ≡ {yit} and
x ≡ {xit}.
Given x and assumed values of β, we use the structural model to generate M statistically

independent simulated data sets {ỹmit (β)}, m = 1, . . . ,M . Each of the M simulated data sets has

N individuals and is constructed using the same observations on the exogenous variables, x. For

each of the M simulated data sets, we compute θ̃m(β) as

θ̃m(β) = arg max
θ
L(ỹm(β);x, θ),

where the likelihood function associated with the auxiliary model is evaluated using the mth sim-

ulated data set ỹm(β) ≡ {ỹmit (β)} rather than the real data. Denote the average of the estimated
parameter vectors by θ̃(β) ≡M−1∑M

m=1 θ̃m(β).

21We remove economy-wide year effects by first regressing measured hours, wages, and earnings on Xit and a set
of year dummies and subtracting the estimated year effects. The variables hours∗it, wage

∗
it, and earn

∗
it refer to the

adjusted measures. We do not subtract the effects of Xit, as is done in many studies of earnings dynamics. The
coeffi cients on Xit are estimated by indirect inference, simultaneously with the other parameters of the model, so that
sample selection in employment can be accounted for. Simultaneously estimating the large number of year effects
with the rest of the model parameters would dramatically increase computational complexity. One could account
for sampling error in the year effects in the parametric bootstrap procedure that we discuss below, but we have not
done so. The correction is unlikely to make much difference because estimated standard errors for the year effects
are relatively small (about .016 for the wage, .01 for hours, and .02 for earnings), the year effects explain less than 1
percent of the variance in earnings, and they are very weakly correlated with BLACKi, EDUCi, and ti.
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I-I generates an estimate β̂ of the structural parameters by choosing β to minimize the distance

between θ̂ and θ̃(β) according to some metric. As described in Keane and Smith (2003) and

elsewhere, there are (at least) three possible ways to specify such a metric. Here we choose β̂ to

minimize the difference between the constrained and unconstrained values of a pseudo likelihood

function of the auxiliary model evaluated using the observed data. In particular, we calculate

β̂ = arg min
β

[L(y;x, θ̂)− L(y;x, θ̃(β))].

Gourieroux, Monfort, and Renault (1993) show that β̂ is a consistent and asymptotically normal

estimate of the true parameter vector β0. The reason is that as N becomes large holding M

and T fixed, θ̃(β̂) and θ̂ both converge to the same “pseudo”true value θ0 = h(β0) where h is a

nonstochastic function.

Accommodating missing data in I-I is straightforward: after generating a complete set of simu-

lated data, one simply omits observations in the same way in which they are omitted in the observed

data. As we have already discussed, we assume that the pattern of missing data is exogenous. In

some cases, it is convenient to estimate auxiliary models in which missing observations are replaced

with some arbitrary value such as 0 or the sample mean. In such circumstances, the same principle

applies: use the same arbitrary values in both the simulated and observed data sets. The fact that

the first period that we observe people is typically after ti = 1 would pose extremely serious “initial

conditions”problems if we were using standard panel data methods, but is handled naturally by I-I

because the missing early observations will affect the probability limits of θ̃(β̂) and θ̂ in the same

way.22

The presence of discrete random variables complicates the search for β̂ because the objective

function (i.e., the difference between the constrained and unconstrained values of the pseudo like-

lihood) is discontinuous in the structural parameters β. Discontinuities arise when applying I-I to

discrete choice models because any simulated choice ỹmit (β) is discontinuous in β (holding fixed the

set of random draws used to generate simulated data from the structural model). Consequently, the

estimated set of auxiliary parameters θ̃(β) is discontinuous in β. The non-differentiability of the

objective function in the presence of discrete variables prevents the use of gradient-based numerical

optimization algorithms to maximize the objective function and requires instead the use of much

slower algorithms such as simulated annealing or the simplex method.

22Heckman (1981), Wooldridge (2005), and others discuss how to deal with initial conditions by using a flexible
form for the distribution of the first observation for each i and its relationship to error distributions in the outcome
equations for ti > t

imin, where , timin is first observation on i. Using their approaches, the econometrician does
not impose any links between the parameters of the main model and the parameters of the initial condition. The
parameters depend on timin, which varies substantially in our sample. Consequently, these approaches to the initial
conditions problem are not attractive in a setting such as ours, which involves a multiple equation model with a large
number of endogenous state variables and substantial variation in timin.
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To circumvent these diffi culties, we use Keane and Smith’s (2003) modification to I-I, which

they call generalized indirect inference. Suppose that the simulated value of a binary variable ỹmit
equals 1 if a simulated latent utility ũmit (β) is positive and equals 0 otherwise. Rather than use

ỹmit (β) when computing θ̃(β), we use a continuous function g(ũmit (β);λ) of the latent utility. The

function g is chosen so that as a smoothing parameter λ goes to 0, g(ũmit (β);λ) converges to ỹmit (β).

Letting λ go to 0 as the observed sample size goes to infinity ensures that θ̃(β0) converges to θ0,

thereby delivering consistency of the I-I estimator of β0. Our choice of g is

g(ũmit (β);λ) =
exp(ũmit (β)/λ)

1 + exp(ũmit (β)/λ)
.

Because the latent utility is a continuous and smooth function of the structural parameters β, g is

a smooth function of β. Moreover, as λ goes to 0, g goes to 1 if the latent utility is positive and to

0 otherwise.

When the structural model contains additional variables that depend on current and lagged

values of indicator variables ỹmit , these additional variables will also be discontinuous in β. In our

structural model, for instance, variables such as employment duration and job tenure depend on

the history of indicator variables such as employment status and job changes. Since employment

duration and tenure are discontinuous in β, they also contribute to creating a discontinuous objective

function in the estimation process. Our smoothing strategy, which we discuss in more detail in

Web Appendix D, ensures that all these variables will also be continuous in β, provided that they

depend continuously on ỹmit . In other words, replacing the indicator functions by their continuous

approximations g(ũmit (β);λ) ensures that all other variables that depend on β through g(ũmit (β);λ)

are continuous. Care must be taken in choosing λ, because approximation error in indicator

functions for a particular year accumulate in the approximate functions for employment duration

and tenure.

We searched for a combination of the smoothing parameter λ and the number of simulations M

that generates suffi cient smoothness in the objective function, while keeping bias small and compu-

tation time manageable. The larger these parameters are, the smoother the objective function will

be, but large values of λ introduce bias and large values of M increase computation time. Based

upon simulation experiments, we chose a small value of λ, .05, which is large enough to smooth the

objective surface suffi ciently given our choice of 20 for M . Our simulation experiments as well as

the parametric bootstrap results reported below indicate that the associated bias in the estimates

is small for almost all of our parameters.

4.2 The Auxiliary Model

Our auxiliary model is the sum of two parts. The first part provides information on the structural

model parameters γwX , γ
w
t3, γ

h
X , and γ

h
t3 that determine the effects of BLACKi, EDUCi, and ti on
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wages, hours, and earnings. It consists of the equations

wage∗it = [Xit, t
3]θw1 + uwit

hours∗it = [Xit, t
3]θh1 + uhit

and the associated sum of squares criterion function23

L1(wage∗it, hours∗it;Xit, t
3
i , θ̃

w

1 (β), θ̃
h

1(β))

=
∑
i,t

(wage∗it − [Xit, t
3
i ]θ̃

w

1 )2 +
∑
i,t

(hours∗it − [Xit, t
3
i ]θ̃

h

1)
2.

The second and main part of the auxiliary model consists of a system of seemingly unrelated

regressions (SUR) with 7 equations and 25 covariates that are common to all 7 equations. Let

w̃age∗it = wage∗it − [Xit, t
3
i ]θ̃

w

1 ,
˜hours∗it = hours∗it − [Xit, t

3
i ]θ̃

h

1 , and ẽarn
∗
it = earn∗it − [Xit, t

3
i ]θ̃

w

1 )2 −
[Xit, t

3
i ]θ̃

h

1 . One may write the system as

(16) Yit = ZitΠ + uit; uit ∼ N(0,Σ); uit i.i.d. over i and t,

where

Yit = [EitEi,t−1, Eit(1− Ei,t−1), JCitEitEi,t−1, w̃age∗it, ˜hours∗it, ẽarn∗it, ln(1 + w̃age∗it
2)]′;

and

Zit = [Const, (ti − 1), (ti − 1)2, BLACKi, EDUCi, EDi,t−1, UDi,t−1, TENi,t−1,(17)

Ei,t−1Ei,t−2, Ei,t−2Ei,t−3, Ei,t−1(1− Ei,t−2), Ei,t−2(1− Ei,t−3),

JCi,t−1Ei,t−1Ei,t−2, JCi,t−2Ei,t−2Ei,t−3,

w̃age∗i,t−1, w̃age
∗
i,t−2,

˜hours∗i,t−1, ˜hours∗i,t−2, ẽarn∗i,t−1, ẽarn∗i,t−2,
w̃age∗i,t−1(ti − 1), w̃age∗i,t−1(ti − 1)2, w̃age∗i,t−1JCit, w̃age

∗
i,t−2JCi,t−1, w̃age

∗
i,t−2Ei,t−1]

′

In estimating the model we use the likelihood function L2(Y ;Z, θ̃2(β)) that corresponds to (16),

where θ2 = (Π,Σ). The assumption uit ∼ N(0,Σ) with uit i.i.d. over i and t is false for several

reasons, including the fact that Y contains binary variables and that both w̃age∗it and ln(1+w̃age∗it
2)

appear. The fact that we use a misspecified likelihood affects effi ciency rather than consistency.

23In ASV (2009) we estimated γwX , γ
w
t3 , γ

h
X , and γ

h
t3 directly from a first stage regression of wages and hours on

BLACK, EDUC, and a polynomial in t. However, this procedure is subject to selection bias associated with the
employment decision. This is why we now treat θw1 and θ

h
1 as auxiliary model parameters rather than structural

parameters. When we used the two-step procedure, we included a second constant in the hours equation that has no
effect on earn∗it because it improved the fit of the model. We kept the second constant in the hours model when we
changed the estimation procedure, but the estimated value is close to 0, so dropping it would make little difference.
The constant γ0h reported in Table 2 has a coeffi cient of 1 in the earnings equation.
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Our choice of what to include in (16) is motivated by the following principles. First, we use a rich

auxiliary model rather than focus on a few features of the data. We do this because our model is

intended to explain both contemporaneous and dynamic interrelationships among key labor market

variables. Given our objective, it makes more sense to use a rich auxiliary model that can capture

these relationships rather than focus on a few features of the data.

Second, we use a common set of right-hand-side variables in the seven equations of the auxiliary

model to avoid having to iterate between Π and Σ to maximize the likelihood function. The

disadvantage, however, is that we do not tailor the right-hand-side variables to the particular

dependent variable. As a result, the auxiliary model probably contains more parameters than

are needed to describe the data. Furthermore, we are restricted in our ability to add additional

right-hand-side variables to particular equations, such as additional interactions between (ti − 1)

and other lagged variables, because the total number of variables would get out of hand. Although

it would be useful to explore differentiating the equations of the auxiliary model in future work, our

simulations indicate that most of our parameters are quite well determined by the auxiliary model

that we have chosen.

Third, since the purpose of the structural model is to explain the behavior of its dependent

variables, we use each of the dependent variables of the structural model as a dependent variable

in the auxiliary model. This accounts for the first six equations. It is also natural to use the

explanatory variables in the structural model as explanatory variables in the auxiliary model. This

accounts for the presence of (ti − 1), (ti − 1)2, EDUCi, BLACKi, EDi,t−1,and TENi,t−1. We also

include UDi,t−1 even though we constrain γUEUD to equal 0. Since the model is dynamic and includes

state dependence terms in most equations, we include two lags of each of the dependent variables for

the first six equations. The lags help distinguish between state dependence and heterogeneity. We

include the interaction terms w̃age∗i,t−1 · (ti−1), w̃age∗i,t−1 · (ti−1)2 to capture change with potential

experience in the degree of persistence in wages. Finally, the terms w̃age∗i,t−1JCit, w̃age
∗
i,t−2JCi,t−1,

and w̃age∗i,t−2Ei,t−1 capture effects of current and past job mobility and past employment on state

dependence in wages. The seventh equation has ln(1 + w̃age∗it
2) as the dependent variable. This

helps identify parameters of the model that influence the level and change in the variance of wages

and earnings over time, including the dependence on job changes and unemployment.

Since Π has 25 × 7 elements and Σ is a 7 × 7 covariance matrix with 28 unique elements, the

auxiliary model has 203 parameters. L1 has another 10 slope coeffi cients and 2 variance terms. In
contrast, the model has only 55 parameters that we estimate by I-I (not counting the measurement

error parameters, tenure coeffi cients, and ρω). As we discuss momentarily, a few of the 55 parameters

are identified in part using using additional moment conditions. Consequently, the number of

features of the data used to fit the structural model greatly exceeds the number of parameters.
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The criterion function is Weight ·L1 + L2. We set Weight to a large value to give primacy

to L1 for purposes of identifying γwX , γwt3, γhX , and γht3, although the estimator is consistent for any
positive value.

4.3 Additional Moments and Other Information Sources

The auxiliary model is poorly suited to identify the parameters of equations (11) and (12) for

initial employment status and the initial wage because in (17) the first three observations for each

individual are lost due to lags. (In the case of L1 we do use the first three observations.) It also
makes it diffi cult to identify changes with experience in the variance of shocks at the beginning of

a career. To address this, we incorporated additional moment conditions.

In the case of initial employment, we estimate the intercepts b0g as b̂0g = b̂∗0gσ̂E1 where σ̂E1 =√
(δ̂
EE

µ )2 + (δ̂
EE

η )2 + 1 for 4 groups g defined by race and whether the person has more than a high

school education. We estimate b̂∗0g using a Probit regression of Eit on BLACKi and the indicator

for (EDUCi > 12). We exclude the interaction to avoid computational problems in computing

bootstrap standard errors that arise from the small sample sizes for blacks. We use the first five

years rather than simply the first because we have relatively few observations for each group when

t = 1.24

To identify σω1, we use the fact that the model implies that the variance of the observed wage

residuals, w̃age∗i1, of an employed individual from race-education group g is

V ar(w̃age∗i1; g) ≡ V ar(wage∗i1 − [Xit, t
3]θw1 ) ≈ (δwµ )2 + σ2ω1,g + σ2υ1 + σ2mw.

The relationship is approximate because the auxiliary model parameters differ slightly from the

structural parameters [γwX , γ
w
tˆ3] because of sample selection. Because of sample size considerations

we estimate V ar(w̃age∗i1; g) as the variance of (residual) wage observations in the PSID correspond-

ing to t ≤ 5. V̂ ar(w̃age∗i1; g) equals .066 for blacks with a high school degree or less, .099 for blacks

with more than a high school degree, .110 for whites with high school or less, and .143 for whites with

more than high school. We then obtain σ̂2ω1,g by setting it to σ̂
2
ω1,g = V̂ ar(w̃age∗i1; g)− (δ̂

w

µ )2− σ̂2υ1−
σ̂2mw at each iteration of the I-I procedure, where in our base case σ̂

2
mw is preset to the outside esti-

mate .0842 on the basis of measurement error studies for the PSID, as discussed below. Estimates

of other parameters are not very sensitive to constraining σ2ω1,g to be the same for all groups and

estimating σ2ω1,g using t ≤ 3 rather than 5.25

24As it turns out, b̂∗0g is 1.188 for blacks with a high school degree or less, 1.484 for blacks with more than high
school, 1.424 for whites with high school or less, and 1.720 for whites with more than high school. The values are
similar when we include BLACK ∗ (EDUC > 12) : 1.124, 1.412, 1.429, and 1.716. We obtain similar results for
other model parameters when we constrain b̂∗0g to be the same for all groups and use t ≤ 3 to estimate it.
25Due to a programming error that we discovered when the paper was essentially complete, we used
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To identify ρω, we use a large number of moment conditions spanning a much longer time span

than the 3 lags in our auxiliary model. The long span helps distinguish persistence due to ωit from

persistence due to µi and υij(t). For workers who are continuously employed between t− g and t+ j

and who do not change jobs between t and t+ j,

(18) cov(w̃agei,t+j − w̃ageit, w̃agei,t−g) = (ρj+gω − ρgω)var(ωt−g|t− g).

We approximate var(ωt−g|t − g) with a constant plus a second order polynomial in t − g. We

compute ĉov (w̃age∗i,t+j − w̃age∗it, w̃age
∗
i,t−g) for each j, g combination satisfying 1 ≤ j ≤ jmax

and 1 < g ≤ gmax. We estimate ρω and the parameters of the polynomial approximation to

var(ωt−g|t − g) by weighted minimum distance using the size of the samples used to estimate

ĉov (w̃age∗i,t+j − w̃age
∗
it, w̃age

∗
i,t−g) for each j, g combination as the weights, eliminating moments

estimated using fewer than 5 observations. We use the average value of .908 as ρ̂.26 For a simpler

version of the model reported in ASV (2009), we obtained .913 when we ignore (18) and rely on

freely estimating ρω simultaneously with the other parameters by I-I.

We impose Altonji and Williams’(2005) estimates of tenure-wage polynomial coeffi cients γwTEN
based on PSID data for the years 1975-2001 rather than attempting to estimate it by I-I, which

would have required adding several variables to the auxiliary model.27

Many studies of the income process simply ignore the presence of measurement error even

though surveys by Bound et al. (2001) and others indicate that it is substantial. Some studies have

attempted to directly estimate the variances of measurement error in wages, hours, and earnings

under a classical measurement error assumption (e.g. Altonji et al. (2002)). Here, we draw loosely

upon studies of measurement error in the PSID and other panel data sets as well as patterns in

the data to come up with estimates of the measurement error parameters. Our choices imply

that measurement error accounts for 35% of var(∆wage∗it), 25% of var(∆hours∗it), and 25% of

V̂ ar(w̃age
∗
i1; g) + σ2mw as the value for V̂ ar(w̃age

∗
i1; g). Correcting the error has almost no effect in point estimates

reported in the paper and the Web Appendix. 
  
 
26In the full sample the number of moments varies from 850 when jmax and gmax are 5 to 2,429 when jmax and

gmax are 9. The point estimates and approximate standard errors for jmax, gmax = 5, jmax, gmax = 6, jmax, gmax = 7,
jmax, gmax = 8, and jmax, gmax = 9 are .89 (.018), .90 (.013), .91 (.009), .92 (.007), and .92 (.006) respectively. (The
standard errors reported in this note account for heteroskedasticity but not for correlation among the moments,
which use overlapping data. They are probably understated.) Equation (18) is an approximation because the model
implies that employment transition probabilities depend on ωt through the wage. This means that the evolution
of ωt depends on the number of periods of continous employment: j + g. This should not matter much because
employment transitions are not very sensitive to the wage level.
27The profile that we use corresponds to Table 6, Panel D, column 2 of their paper. It is .0272563 ·Ten− .0023283 ·

Ten2 + .00815 · Ten3/100 − .000914 · Ten4/1000. It is obtained using Altonji and Shakotko’s (1987) instrumental
variables approach, which treats t as exogenous and uses the within-job j variation in Tenijt, T en2ijt, T en

3
ijt, and

Ten4ijt to identify the effects of tenure. The implied estimates (standard errors) of the return to 2, 5, 10 and 20
years of tenure are .046 (.0064), .008 (.0011), .112 (.016), and .119 (.029), respectively. Our finding of a modest link
between t and υij(t) implies that Altonji and Williams’estimates are biased downward by a small amount.
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var(∆earn∗it). However, we also experiment with alternative choices and find that most of our

results are robust. See Web Appendix C for more details.28 We abstract from measurement error

in employment, which we believe is relatively unimportant, as well as in the job change indicator,

which is probably more serious (see Altonji and Williams (1998)).

4.4 Mechanics of Estimation

Our chosen values of λ = 0.05 and M = 20 yield a smooth objective function that allows the use of

fast gradient-based optimization algorithms with little evidence of bias.29 Not surprisingly given

the size and complexity of our models, the objective function displays multiple local optima with

respect to some of the parameters. We experimented extensively with different starting values to

make sure that we are finding the global optimum. We began the process with estimates obtained

from probit or regression models relating the dependent variable in each equation of the structural

model to the observed variables in that equation, with the fixed heterogeneity components ignored.

We refined our search by using grid evaluations, paying particular attention to the set of parameters

that appeared most problematic, and by experimenting with smaller versions of our models to help

us find good initial guesses, and then building up to more complex versions of the models.

The fact that we are iterating on 55 parameters, the large size of the auxiliary model, and the

number of simulations make computation very time-consuming even though we use a fast gradient-

based optimization algorithm. To reduce estimation time, we exploit the highly parallelizable

structure of our estimation methodology.30

4.5 Bootstrap Standard Error Estimation

We use a parametric bootstrap procedure to conduct inference. Given consistent estimates of the

structural parameters, we repeatedly generate “artificial” observed data sets from the structural

model, applying data availability rules that match the PSID sample. We treat each of the artificial

data sets as if it was the PSID (with year effects removed) and apply our full estimation procedure,

including computation of the values of ρ̂ω, b̂0g and σ̂
2
ω1,g, to obtain estimates of the parameters of

28The assumption of normally distributed, classical measurement error runs counter to evidence that actual reports
are a mixture of correct responses and responses with error. Furthermore, Bound et al (2001) summarize evidence
that measurement error is mean reverting to some extent, with individuals smoothing shocks when they report on
economic variables. In principle, our methods can accommodate almost any measurement error assumption. We
stick with the simpler formulation for lack of hard quantitative evidence on richer measurement error specifications
that we can import into our model.
29We use a standard quasi-Newton algorithm with line search, which can additionally handle simple bounds on

the parameter values. The algorithm approximates the (inverse) Hessian by the BFGS formula, and uses an active
set strategy to account for the bounds. Gradients are computed by finite differences.
30Specifically, for a given value of the structural parameters, the M = 20 simulations required to evaluate the

objective function are essentially independent and can be conducted simultaneously by 20 different processors. All
programs are written in FORTRAN 90.

21



the structural model for each such data set. The standard deviations of the parameter estimates

across the data sets serve as our standard error estimates.31 The standard errors do not account for

sampling error in γ̂wTEN or uncertainty about the measurement error parameters. Standard errors of

functions of model parameters, such as the impulse response functions and variance decompositions

are constructed as the standard deviation across parametric bootstrap replications. The bootstrap

procedure is very computationally intensive, so we use 300 bootstrap replications.32

4.6 Local Identification and Analysis of Estimation Bias

Along with functional form restrictions and normality assumptions, exclusion restrictions play a

key role in identification. First, we restrict the form of state dependence. For example, in the

baseline case employer tenure (TEN) is excluded from the EE equation, and employment duration

(ED) is excluded from the job change equation (JC). Wages depend directly on only the current

value and first lag of unemployment and depend directly on tenure but do not depend directly on

employment duration. The lag of hours does not appear anywhere in the model. Second, the model

places restrictions on the direct links among wages, employment, unemployment, job changes, and

hours. Third, the model restricts fixed heterogeneity to have a 2 factor structure, and excludes one

of the factors from the wage equation. These and other restrictions help us distinguish between state

dependence and heterogeneity and to identify the causal links among the variables in the model.

One cannot easily verify that the parameters of our model are identified by matching up the

parameters against sample moments. In particular, the fact that the number of moments that play

a role in the likelihood function of the auxiliary model is much larger than the number of structural

model parameters does not establish identification of any particular parameter. Consequently, we

use Monte Carlo experiments extensively to establish local identification and analyze the adequacy

of our auxiliary model given the sample size and demographic structure of the available data and to

check for bias. For a hypothesized vector of parameter values, we simulate data and then verify that

the parameter values that maximize the likelihood function of the auxiliary model are close to the

hypothesized values. Using a number of model specifications, including ones that differ somewhat

from the ones presented in the paper, we informally experimented with varying parameter values to

get a sense of how robust identification is to the particular values. We also used these experiments

to investigate whether the objective function has flat regions near the solution, or multiple global

optima.

In general we have found that identification of most of the parameters is quite robust. However,

31As a check, we also computed standard errors using a nonparametric bootstrap procedure based on resampling
from the PSID for some specifications. We used 100 replications and obtained similar results.
32We dropped 4 of 304 replications because the estimator failed to converge. The corresponding figures for the low

and high education samples are 21 of 321 and 14 of 314. In the case of multinomial model in Section 7, we dropped
25 of 325 cases.
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our Monte Carlo studies also indicate that a few of the parameters are poorly determined given

the sample size. We also found local optima involving alternative combinations of subsets of the

parameters. Bringing in additional information through the moment conditions described above

solved the most serious problems. However, some of the parameters remain sensitive to changes

in the auxiliary model, and starting values must be chosen carefully. This is particularly true of

the coeffi cients of the experience profiles in the EE, UE and to a lesser extent, the JC equations.

In Table 2 below there is also evidence of bias for some of the parameters in these equations.

Overall, however, the relatively small values of the bootstrap standard errors in the tables below

indicate that for the sample size and demographic structure of the PSID sample, our auxiliary model

and the additional moment conditions are quite informative about most of the model parameters.

Furthermore, in almost all cases the means of the bootstrap replications are close to the point

estimates, indicating that the degree of bias in the procedure is small for most of our parameters.

5 Empirical Results

First, we discuss the parameter estimates for the baseline model. The baseline is the model pre-

sented in Section 2. Second, we evaluate the fit of the model by comparing means and standard

deviations of the PSID data to the corresponding values based on simulated data from the model

and by comparing simple regression relationships in actual and simulated data. Third, we present

impulse response functions as a way to summarize how shocks affect the level and variance of

wages, hours and earnings. Finally, we decompose the variance of wages, hours, and earnings into

the contributions of the main types of shocks in our model.

5.1 Parameter Estimates for the Full Sample

Columns I, II, and III of Table 2 report parameter estimates, the means of the parametric bootstrap

estimates, and standard error estimates for the full sample. The row headings indicate the parameter

and the variable (or error component) that the parameter estimates correspond to. The estimates are

grouped by equation, beginning with EE. In the case of binary variables EE,UE, and JC, column

IV reports marginal effects on the probabilities that EEit = 1|Ei,t−1 = 1, UEit = 1|Ei,t−1 = 0, and

JCit = 1|EEit = 1, respectively.33

33These are evaluated at the probability that EEit = 1|Ei,t−1 = 1, UEit = 1|Ei,t−1 = 0, JCit = 1|EEit = 1,
respectively, and are obtained by multiplying parameters of the latent indices by the standard normal density
evaluated at the probabilities. In the case of t we take the quadratic term into account. In Web Appendix B we use
simulated data to estimate average marginal effects on JCit = 1|Eit−1 = 1 taking into account the effects of variables
on EEit = 1|Ei,t−1 = 1 and JCit = 1|EEit = 1.
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5.1.1 Employment Transitions and Job Changes

The coeffi cients on (t−1) and (t−1)2 in the EE equation imply that the latent variable determining

Eit conditional on Ei,t−1 = 1 declines slowly with t until t is about 13 and then rises slowly. However,

the implied change in the probability of a transition is small because the EE probability is high.

The coeffi cient on min(EDt−1, 9) is .028 (.025) and the marginal effect is .002, indicating a small

positive duration dependence in the odds of remaining employed. The value of min(EDt−1, 9) is

rising over the first few years in the labor market, but the overall relationship between EE and t is

weak. The fit of the experience profile of EE transitions is good, as we document below.34 In Table

3a below we show that a regression of Eit on EDi,t−1 conditional on Ei,t−1 = 1 gives similar results

in data simulated from the model and in PSID data. This indicates that the combined effect of

duration dependence and unobserved heterogeneity in the model does a good job of matching the

weak positive state dependence found in the data. As was noted earlier, we restricted γEETEN to

0 because simulations experiments suggested diffi culty in distinguishing the effects of employment

duration and firm tenure.

The coeffi cient on wage
s

it is .073 (.115). The wage effect is not statistically significant and the

implied marginal effect on EE is small.

Moving to the UE equation, the estimated t profile implies that the exit probability declines

with experience and then increases, but the standard errors are large. As we document in Section

5.2.1, the model predictions of the probability that UE = 1 are within the 95% confidence intervals

based on the PSID data for most values of t, but the PSID data are noisy. We experimented with

models that included UDi,t−1 but had diffi culty estimating the duration coeffi cient, perhaps because

the overall number of unemployment spells is small and relatively few individuals were unemployed

for two or more surveys in a row. (Most work on duration dependence in unemployment spells

uses weekly, monthly or quarterly data). Simulations in Table 3a show that the equation without

unemployment duration matches closely the negative link between UE and UDi,t−1 found in the

PSID, presumably because of the important role played by permanent heterogeneity.

In the JC equation, the latent variable for JCit|EEit = 1 declines with t over the first 20 years,

but is strongly decreasing in job tenure. The coeffi cient on TENi,t−1 is -.067(.023), indicating that

10 years of seniority shift the index determining JCit by .67 standard deviations of the job change

shock εJCit . The marginal effect of an extra year of tenure on JCit = 1 is -.013. It is noteworthy that

we obtain a large negative effect of tenure on JC even after accounting for unobserved person-specific

heterogeneity (µ and η) and for job-match heterogeneity.

The job-match components υij(t−1) and υ′ij′(t) play an important role in job mobility without

34The specific point estimates of the the coeffi cients on t− 1, (t− 1)2, and min(EDt−1, 9) should be taken with a
grain of salt given the standard errors and the fact that the bootstrap replications provide evidence of some bias.
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unemployment, and they have signs and relative magnitudes that are consistent with the theoretical

discussion above. The coeffi cient on υij(t−1) is -.825 (.154). To get a sense of the magnitude, note

that the standard deviation of υij(t−1) is .314. Consequently, a one-standard-deviation increase in

υij(t−1) lowers the JC index by -.26. Since the coeffi cient on TEN is -.067, this is roughly equivalent

to the effect of 4 years of seniority. The average marginal effect of a one-standard-deviation shift is

-.050. The current value υ′ij′(t) has a coeffi cient of .490 (.128).
35 A one-standard-deviation shock to

υ′ij′(t) raises the job change probability by .033.

The coeffi cient on BLACK is -.154 (.113) in the equation for EE. The average marginal effect

is -.009. BLACK has a small, negative but imprecisely estimated effect in the equation for UE.

EDUC has a small positive effect on both EE and UE equations. The effects of BLACK and

EDUC on JC are close to 0 and insignificant. The coeffi cient on the “ability” factor µ is .297

(.127) in the EE equation, .311 (.177) in the UE equation and -.068 (.129) in the JC equation.

These results are sensible in light of the fact that µ has a positive sign in both the wage and hours

equations. The corresponding marginal effects of a one-standard-deviation shift are .018, .094, and

-.013. These are the partial effects of the heterogeneity components in a given period holding spell

duration constant.

The mobility/hours preference component η enters the EE, UE and JC indices with coeffi cients

of -.480 (.095), .105 (.171), and .538 (.108), respectively. The results indicate that η lowers the

probability of remaining employed and raises the probabilities of transiting out of unemployment

(not significant) and of moving from job to job without unemployment. The marginal effects of a

one-standard-deviation shift in η on the mean probabilities are -.028 for EE, .032 for UE, and .104

for JC|EEt = 1. It has essentially a zero coeffi cient in the hours equation.

5.1.2 The Wage Model

We begin with the parameters of (3), the equation for the autoregressive component ω
it
. The

estimated standard deviation of the initial condition for ω
i1
ranges from .154 for less educated black

to .317 for highly educated whites. The autoregressive coeffi cient ρ̂ω is .908 (.025), which implies

considerable persistence but is well below unity. The shocks εωit have a standard deviation of

.088 (.005). This value strikes us as large given that we separately account for the effects of job-

specific error components. The only other study we know that allows for a persistent general wage

component, a job-specific error term, and endogenous mobility is Low et al. (2010). They obtain

a value of .104 but set ρω = 1.36 In the PSID, the standard deviation of wage changes for stayers

is.128 after adjusting for measurement error.

35The total effect of υij(t−1) on the JC probability is -0.029, which is smaller than the partial effect because a unit
shift in υij(t−1) shifts the mean of υ′ij′(t) by .693.
36They do not include the (1− Eit) terms in their specification.
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The coeffi cients of -.135 (.013) on (1 − Eit) and .049 (.017) on (1 − Ei,t−1) imply that being

unemployed at the survey date has a large effect on the mean of the wage that persists for some

time, even when the value of lost tenure is held constant. As will become clear from the impulse

response functions, unemployment also leads to a loss of tenure as well as to a reduction on average

in the value of the job-match component, which implies further reductions in wages.

The estimate for coeffi cient δwµ on µ is .076 (.036). The direct contribution of unobserved

permanent heterogeneity to the variance of wages is relatively small once we account for both

ωit and job-match heterogeneity. However, the estimate of δwµ is somewhat sensitive to model

specification.

The parameters of the job-match component υij(t) are quite interesting. The initial condition

υij(1) has a standard deviation of .173 (.019). The autoregression parameter ρυ is .693 (.051) and

the value of σ̂υ is large: .276 (.009). As we have already noted, the substantial persistence of υij(t)

across jobs suggests that wage offers are based in part on salary history, that demand shocks may

reflect narrow occupation, industry and region and thus may not be entirely job-specific, and/or

that the search network available to workers depends on job quality. As we shall see below, the

contribution of the job-specific component to the variance of wages and earnings is substantial.

As we discuss in the Appendix 1, one can use the model to decomposeE(wageit|t), the experience
profile of wages, into the contributions of general human capital [tγwt + t2γwt2 +t3γwt3], change in the

general productivity component ωit due to unemployment shocks, E(ωit|t), gains from job mobility
E(υij(t)|t), and accumulated job seniority E(P (TENit)γ

w
TEN |t). Figure 1 shows the components

and thus addresses the fundamental question of what accounts for wage growth over a career. We

exclude E(ωit|t) from the graph to reduce clutter. It declines by -.017 over the first 10 years and

-.021 over the first 30 years, primarily because of unemployment shocks. Most of the return to

potential experience is due to general skill accumulation. Job shopping and the accumulation of

tenure account for increases of.068 and.064, respectively, of the .512 increase in the mean of the log

wage over the first ten years. They account for .127 and .113 of the total increase of .828 over the

first 30 years. Using social security records for quarterly earnings (rather than hourly wage rates)

Topel and Ward (1992) find that job mobility accounts for 1/3 of wage growth during the first 10

years in the labor market, which is much larger than what we find. We suspect their estimates

are overstated by the school-to-work transition and growth across jobs in hours worked early in a

career, while ours are understated because we miss some job changes and do not use the first three

years of wages in the component L2 of the auxiliary model.37

37Using the PSID Buchinsky et al (2010) estimate a simultaneous model of employment, job mobility, and wage
rates that incorporates tenure effects, general experience, and job-specific error components. They find a large effect
of human capital accumulation and returns to seniority that are more than double the values from Altonji and
Williams (2005) that we impose but do not present estimates of the gains from job mobility. Given total wage
growth in the PSID, the sum of their estimates of the general human and tenure profile seems to imply zero or
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5.1.3 Hours and Earnings

In the hours equation the effect of Eit, γ̂
h
E, is .430 (.011). The large value indicates that unemploy-

ment at the survey date is associated with relatively long completed spells of nonemployment. As

we noted above, short spells will tend to be missed by Eit given that it is a point-in-time measure

at annual frequencies. They will be captured by the hours component εhit. The small negative wage

elasticity of -.081 (.016) is consistent with a large literature that finds that the hours of male house-

hold heads are not very responsive to wages. The coeffi cients on µ and η are .097 (.019) and -.012

(.023) respectively, suggesting only a modest role for individual heterogeneity (net of EDUC and

BLACK) in annual hours in any given year. However, permanent heterogeneity turns out to be

quite important over the lifetime. The importance of µ relative to η varies across the specifications.

The standard deviation of εhit is .141, indicating substantial year-to-year variation in hours even

when the job-specific component ξ does not change. The standard deviation of ξ is large– .163

(.014).

Turning to earnings, recall that the coeffi cients γew and γeh are constrained to equal 1. The

earnings component eit has an autoregression coeffi cient of .624 (.009) and the standard deviation

of the shock εeit is .169 (.002).

Does persistence in wages, earnings and hours stem primarily from permanent heterogeneity

or from dynamics in the model and persistence in ωit, υij(t), and ξij(t) as well as eit? To explore

this question, we used simulated data from the model to regress the wage on the first lag of the

wage with and without controls for EDUCi, BLACKi, µi, ηi and ωi1. We repeated the procedure

using the fifth lag and the tenth lag of the wage. We also estimated similar sets of autoregressions

for earnings and hours. The size of the decline in the lag coeffi cient when the controls are added

indicates that fixed heterogeneity is a very important source of persistence in wages, earnings, and

hours, but not the main source. (Not reported).

negative gains from mobility on average over a 30 year career. Bagger et al (2011) do not allow for a direct effect
of seniority on wages such as would arise from shared investment in firm-specific capital. They interpret an indirect
effect that arises through the response of firms to outside offers as a return to tenure. They attribute average growth
of wages within the firm and growth of wages across firms to job search and to general human capital. Using Danish
matched employer/employee data they find that general human capital accumulation raises the productivity of the
less educated group by about .14 over the first ten years contributes but lowers productivity by about -.09 over
the next 20 years. It is much more important for highly educated workers. The within job and between job wage
growth that reflect job search and competition are both important contributors to wage growth for those who remain
employed across periods. The between job component is the more important of the two. However, they do not
provide estimates of the overall contribution of moving to better jobs that we can compare to our estimates, because
they focus on job changes without unemployment and do not take account of the fact that workers lose some of
the gains from prior search when they suffer a layoff. Rubinstein and Weiss (2006) survey the literature on the
determinants of wage growth over a career.
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5.2 Evaluating the fit of the Model

We use the estimated model to simulate careers for 271,200 individuals (100 times the size of our

PSID sample). We construct the simulation so that, for each simulated career, education, race and

the potential experience values for which data are available match that of a corresponding PSID

case. The simulated variables incorporate measurement error. To examine the fit of the model, we

first compare the experience profiles of the means and standard deviations of the key variables

implied by the model against corresponding values from the PSID. We then turn to a comparison

of regression relationships among key variables that are implied by the model with those of the

corresponding PSID estimates.

5.2.1 Predicted and Actual Mean and Standard Deviations of Key Variables, by
Potential Experience

Figure 2 compares means and standard deviations of key variables in the PSID against the corre-

sponding model predictions. Panels (a), (b), and (c) display the 95 confidence interval estimates

of the standard deviations of wage∗it, hours
∗
it, and earn

∗
it based directly on the PSID sample to the

point estimates from the model.38 In all cases except the wage when t = 5 and hours when t = 35,

the model predictions lie within the confidence intervals, although some values are close to the

boundary. Across experience levels, the predicted value of SD(wage∗it) is .50, while the actual value

is .49. The model slightly overpredicts the standard deviation early in a career and understates the

increase a bit.

The sample value for SD(hours∗t ) is .28– close to the model value of .27. The model implies

that SD(hours∗t ) varies little with t and understates the increase between 30 and when t = 35. This

might reflect the effects of partial retirement not captured by the experience profiles in the model,

but it also may be due to sampling error in the PSID estimates.

Panels (d) and (f) of Figure 2 compare the PSID values and the model predictions for the mean

of Et and for the mean of JCt conditional on Et−1 = 1. The overall mean for Et is.966 in the

data and .971 based on the model. The model overstates employment when t = 5 by about .02,

which is statistically significant. Neither the data nor the model predictions show much movement

in Et with experience. Overall, the mean of JCt predicted by the model matches the data very

closely. The model tracks the experience closely relative to sampling error. Panel (e) reports the

sample means and simulated means of EE transitions, which match reasonably well. Panel (g)

shows corresponding figures for exits from unemployment (UE). The actual and simulated means

38For each value of t shown in the figure the results are based on t − 1, t, and t + 1. The confidence interval
estimates are based on the normal approximation using robust standard errors clustered at the individual level. We
display point estimates for the model predictions rather than confidence interval estimates because the latter are
very narrow in almost all cases.
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of UE are .774 and .798, so the model matches these transitions slightly less well. However, as the

figure shows, there is a lot of noise in the sample means for particular experience values.39

Panels (h), (i), and (j) examine the behavior of the mean of ED, UD, and TEN . The fits for

UD and TEN are reasonably close, although the model slightly overpredicts tenure late in a career.

The model overpredicts ED by a substantial amount. This is probably attributable to our use of

TEN as the initial value for ED when an individual first enters the PSID sample.

5.2.2 Comparison of Regression Relationships Among Key Variables

Tables 3a and 3b report a series of descriptive regressions. Coeffi cients in bold italics are regres-

sion coeffi cients based on simulated data. Each of these coeffi cients is followed underneath by a

corresponding regression coeffi cient based on the PSID data. Robust panel standard errors for the

PSID estimates are in parentheses.40 Column I of Table 3a reports regressions of Et on BLACK,

EDUC, (t − 1)/10, (t − 1)2/100, and EDt−1 conditional on Et−1 = 1. This is a stripped down

version of the EE equation in the structural model. There are some differences in the experience

profiles. The coeffi cient on EDt−1 is .0027 in the simulation and .0022 (.0002) in the PSID, a fairly

close correspondence.

Column II reports results for a version of the UE equation. Although the differences in the

coeffi cients on the experience polynomial appear substantial, the model fits the experience profile

reasonably well, as previously seen. The model matches well the degree of persistence in unemploy-

ment spells. The coeffi cients of the JC equation in Column III match fairly closely.

Table 3b examines the dynamics of wage∗t , hours
∗
t , and earn

∗
t . In Column I, the sums of the

coeffi cients on the two lags of wage∗t are very close, although the relative sizes of the coeffi cients

on the first and second lags differ a little. The coeffi cient on JCt is small and negative in both the

simulated and PSID data.

Column III examines hours. The coeffi cients match reasonably closely, although the sum of the

coeffi cients on the lags of hours is a little larger in the simulated data than in the PSID data and

the discrepancy between cubic polynomials is between.040 and.052 for values of t greater than 12.

The wage coeffi cient is essentially 0 in the actual data and -.025 in the simulated data– a close

correspondence.

Finally, Columns IV and V report earnings regressions. Note that all of the dynamics in earnings

stem from dynamics in the wage, hours, and the autoregressive earnings component eit. In Column

39The confidence interval estimates for the UE probability in panel (g) are the exact confidence intervals for the
binomial distribution. All other confidence intervals in Figure 2 are based on the normal approximation as described
previously.
40As in the previous subsection, the point estimates for the simulated data are based on a sample 100 times as large

as the PSID, with the same demographic structure. The PSID standard errors provide a rough guide to whether the
coeffi cients based on the simulated data are statistically different from the PSID regression coeffi cients.
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IV, the sum of the coeffi cients on the lagged earnings earn∗i,t−1 and earn
∗
i,t−2 is .82 in simulated

data and .84 in the PSID data, so that the model understates the persistence of earnings by a small

amount. There are also some small differences between the data and the model in the coeffi cients

on wage∗t and hours
∗
t (Column V).

Overall, we view the match between the model and the data as good.

5.3 Mean and Variance Impulse Response Functions

Figure 3 reports impulse responses to shocks that occur when t = 10. The point estimates displayed

are constructed as follows. First, using our model, we simulate a large number of individuals through

t = 9. Then we impose the shock indicated in the figures on all individuals in period 10. After that,

we continue the simulation in accordance with the model. The different panels in the figure show

the mean paths of earnings, wages, and hours relative to the base case. The base case represents

the mean of the simulated paths in the absence of the specified intervention in period 10.41

Since wages and hours are reflected in earnings with coeffi cients of 1, we focus the discussion

on earnings, shown in panel (a), to save space. Panels (b) and (c) show the response of wages and

hours. The diamond line in panel (a) reports the response of the mean of earnit to a one-standard-

deviation positive shock to εωit, the error term in the autoregressive component of wages. Earnings

rise by about .08 and the effect slowly decays, governed by the value .908 for ρω. The pattern for

earnings closely mirrors the response of wages (panel b) because the coeffi cient on the wage is 1 and

the wage elasticity of hours is only -.08.

The line with circles shows the effect of becoming unemployed when t = 10. The pattern is very

interesting. The log of earnings drops by about -.6, recovers by about two thirds after one year, and

then slowly returns to the base case. The initial drop is the combination of a drop of about -.4 in

log hours (panel c) and a drop of about -.2 in the wage (panel b). Hours recover almost completely

after one period. The wage increases by about .02 in the first year and continues to recover slowly

after that.

The drop in wages is due to three main factors. First, the distributed lag coeffi cients on un-

employment in the wage equation and ρ̂ω indicate that unemployment reduces ωit by -.135 (.013)

followed by an increase a year later of .049 (.017) plus .135*(1-.908) if the person leaves unemploy-

ment. After that, the response of ωit to unemployment is governed by ρ̂ω. Second, the loss of

tenure lowers the wage by an average of .064 relative to the baseline average for persons at t = 10.

Third, since there is no selectivity in the job change induced by the unemployment spell, on average

workers suffer a decline in υij(t) equal to (1 − ρυ)E(υij(t)|t = 10), or .020. On average, endogenous

411.984 standard error bands were obtained by computing impulse responses using each of the 300 values of the
model parameters obtained by parametric bootstrap. The bands are quite narrow, so we omit them to avoid cluttering
the figures. They are available upon request.
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mobility following the unemployment spell leads υij(t) to move back up toward the base case mean

for a given value of t.

The pattern of a long-lasting impact of unemployment on earnings is broadly consistent with a

number of previous studies, including Jacobson, Lalonde, and Sullivan (1993), who use establish-

ment earnings records. Using the PSID and a fixed effects strategy, Stevens (1997) finds a 30% drop

in earnings and a 14% drop in wages in the year of a layoff. Earnings recover substantially in the

first year, but wages recover very slowly. Her estimate of the initial earnings loss is smaller than

ours, perhaps because those who are laid off do not necessarily become unemployed, and those who

are unemployed at the survey date tend to be in a long spell. The model permits us to examine

effects that operate through wages and hours separately, as well as to identify the specific channels

of influence.42

Finally, the figures report the response of wages, hours, and earnings to an exogenous job change.

In this case, JCit is set equal to one in period 10 for all individuals with Et = Et−1 = 1, which

one should think of as resulting from a large positive realization of the i.i.d. component εJCit that

negatively affects the relative attractiveness of the current job, rather than from a large draw of

υ′ij′(t). The line marked with "x" shows the average response. Part of the decline in earnings reflects

the value of lost tenure (.064). In addition, since the job change is not selective on υij, υij(t)

declines by (1 − ρυ)E(υij(t)|t = 10) or .020. The line with triangles is the effect of an exogenous

job change that is accompanied by a draw of ευij(t) that is one standard deviation above its mean,

or .276. The net positive effect is large and highly persistent. These results are mirrored in wages

(panel b). In addition, we show the effect of an exogenous job change that is accompanied by a

one-standard-deviation increase of .163 in the job-specific hours component ξij(t). This is associated

with a positive increase in hours worked and in earnings that decays in half in the first few years

but slowly thereafter. Since ξij(t) is independent across jobs, the persistence stems from the fact

that when t is greater than 10, job changes with or without unemployment are infrequent.43

We also use the model to estimate the effects of an exogenous job loss and an exogenous job

change on earnings variability using the methodology described above. The circle line in panel (a)

of Figure 4 graphs the ratio of var(earnit− earni,t−1) following an exogenous unemployment shock
42Kletzer (1998) surveys the literature on job loss and wages. A number of studies examine how employer and

industry tenure affects the size of the loss. When the problem of unobserved worker heterogeneity (but not job
heterogeneity) is addressed there appear to be modest tenure effects of the loss that are consistent with Altonji and
William’s (2005) estimates used here. Neal (1995), Carrington (1993) and Parent (2000) argue that industry tenure
is more important than firm tenure. Kambourov and Manovskii (2009) argue that occupational tenure is more
important than firm or industry tenure. As we noted earlier, one could extend the model we consider to include
industry and occupation transition equations, but leave this to future research.
43We also computed, but do not report, the effects of shocks that occur when t = 3. The immediate effect of

unemployment on earnings and wages is somewhat smaller than when t = 10 because the decline in tenure and in
υ is smaller. The effects are also less persistent. Job changes accompanied by shocks to υ and to ξ also have less
persistent effects.
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when t = 10 to the baseline variance for the model. The variance ratio is slightly below 1 when

t = 10, it is 1.69 when t = 11, declines to 1.27 when t = 12, and then slowly declines to 1 over

the next ten years. Panel (b) shows that the corresponding ratio for var(earnit) is about .85 when

t = 10, presumably because differences in wages matter less when everyone is unemployed at the

survey date. It rises to 1.10 when t = 11 and then slowly declines to about 1.05. An exogenous job

change induces a big spike in the ratio var(earnit−earni,t−1) when t = 10. The corresponding ratio

for var(earnit) rises slowly following the shock, presumably because in some cases the exogenous

job change induces additional ones. We have produced corresponding figures for shocks at t = 3

(not shown). The impact on the variance in that case is somewhat smaller and less persistent.

5.4 Variance Decompositions

In this section, we use the model to measure the relative importance for the variance of earnings,

wages, and hours of the initial condition and shocks to the autoregressive wage component, the

i.i.d. hours shocks, the i.i.d. earnings shocks, job changes and employment spells and the associated

shocks, the permanent heterogeneity components µ and η, and the effects of education for the white

population. To do this, we first compute the variance of the sum of the annual values of the levels

of earnings, wages, and hours over a 40-year career. We then repeat the simulation after setting the

variance of the particular random component in the model to 0. We use the drop in the variance

relative to the base case as the estimated contribution of the particular type of shock. Since

the model is nonlinear, the contributions do not sum to 100% and may be negative.44 We have

normalized them to sum to 100. We report results for the levels of variables, accounting for the

experience profile in all variables. The decompositions of the sums of the annual values of logs of

earnings, hours, and wages are similar (not reported). We use the parametric bootstrap distribution

of β̂ to estimate the standard errors of variance contributions, which are reported in parentheses.

The results are in Table 4a. The first row refers to the sum of lifetime earnings. The earnings

shocks εeit account for only 5.8% of the variance in lifetime earnings even though they account for

about 15% of var(earnit) in a given year (Table 4b). The reason for the relatively small contribution

to lifetime earnings is that the shocks are not very persistent. Similarly, the i.i.d. hours shocks εhit
contribute only 1.7% of the variance in lifetime earnings but account for between 6.1% and 7.4%

of the variance in a year’s earnings (Table 4b). One can easily self-insure against these shock

categories. In contrast, in column III, the initial condition εωi1 and the i.i.d. shocks to ωit are

together responsible for 9.6% of the variance in lifetime earnings. The 9.6% figure reflects the fact

44A few of the estimated variances contributions are in fact negative. We have verified that variance in one shock
can reduce the influence of other shocks. Variance in µ and in η increase heterogeneity in turnover behavior, which
tends to reduce the variance in the sum of earnings and wages. On the other hand, the direct effects of µ on wages
and hours and of η on hours increases variance.
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that these shocks account for 15.3% of the variance in lifetime wages.45 They contribute little to

the variance in hours because the response of hours to wages is small.

The most striking result is in column IV, which shows the collective impact of job-specific

hours and wage components, unemployment spells, and job changes. Altogether, mobility and

unemployment-related shocks account for 43.5%, 53.5%, and 59.2% of the variance in lifetime earn-

ings, wages, and hours, respectively. Given the interactions among the job change and employment

related factors, we break down their relative contributions by first turning off the job-specific hours

shocks, then turning off both job-specific hours and wage shocks, then turning off hours, wage, and

unemployment shocks, and finally turning offhours, wage, and unemployment and the idiosyncratic

job change shocks (εJCit ). We choose this order because the employment transitions and job changes

that are induced by εEEit , εUEit , and ε
JC
it matter for variance primarily because jobs pay different

wages and require different hours rather than because of the direct impact of unemployment and

job changes on wages and hours. The estimates are reported in columns VIII, IX, X, and XI. For

earnings, job-specific wage shocks are more important than hours shocks. Job-specific wage shocks

dominate for wages, while job-specific hours shocks dominate for hours but also contribute 8.5% to

the earnings variance. Some of the changes in hours within and across jobs may be due to changes

in preferences and may not represent risk.

Finally, we turn to the three permanent heterogeneity components for whites: η, µ, and EDUC.

Surprisingly, the estimates in column V indicate that the mobility component η does not play much

of a role. The point estimate is actually negative. However, µ accounts for 15.2% (4.3%) of the

variance in lifetime earnings and 32.5% (11.3%) of the variance in work hours but only 4.3% (4.9%)

of the variance in wages. The positive direct effect that µ has on the wage variance is offset by

its role in reducing job changes and transitions into unemployment. Education is very important,

contributing 28.8% of the variance in lifetime earnings and 32.7% of the variance in lifetime wages

but only 2.7% of the variance in lifetime hours. The combined variance contribution of η, µ, and

EDUC and the initial draws ωi1 and υi1 of ωit and υit is 54.9% for lifetime earnings, 44.8% for

lifetime wages and 39.1% for lifetime hours.

5.5 Sensitivity to Alternative Measurement Error Assumptions

In Web Appendix C, we present model estimates for alternative assumptions about measurement

error. Relative to the standard errors, the changes in the parameters of the EE, UE, JC, earnings,

and hours equations are minor. Most of the parameters of the wage equation are also insensitive

to the measurement error assumptions, but there are four important exceptions. The coeffi cient δwµ
45The separate contributions of ωi1 and the shocks εωit are 3.2 and 6.4 percent in the case of earnings and 4.3 and

11.0 percent in the case of wages.
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on the permanent productivity component µ falls from.08 (.036) for the parameter values we chose

to essentially 0 when we use the alternative, higher values of .130 for σmw and .121 for σmh. The

decline in the importance of the fixed heterogeneity term is accompanied by an increase in ρυ from

.693 (.051) to .78, an increase in συ1 from .17 to .26, a decline in σω from .09 (.0053) to .03, and a

decline in the values of σw1 for the 4 race-education categories. The net effect of these changes is to

reduce the role of the permanent productivity component and the persistent wage component ωit

in the variation of wages across people and the persistence over time. The variance decompositions

are qualitatively similar to the results for our assumed values of the measurement error variances,

but show a large decline in the importance of µ and ωit that is balanced by a large increase in

the importance of shocks associated with job changes and employment transitions. The impulse

response functions of earnings, wages and hours to various shocks are virtually identical to those

discussed above, with the obvious exception that the decline in σω leads to a proportional decline

in the effect of a one standard deviation shock to ωit.

We strongly prefer the results based on the lower values for σmw and σmh. Given that we do

not find evidence of a unit root in the wage process, a value of essentially 0 for δwµ is implausible.

For example, the substantial correlation across siblings and between parents and children in wage

rates conditional on education and race points to a fixed heterogeneity component that is correlated

across siblings and across generations.46 However, it is important to emphasize that most of our

results are not sensitive to the measurement error assumptions.

6 Results for Low and High Education Samples

Columns V and VIII in Table 2 report point estimates of the baseline model estimated on SRC

subsamples of whites with a high school degree or less and whites with more than high school

education. We focus on whites to avoid confounding the effect of education with the effect of race

given that blacks tend to be less educated than whites. Results for all whites (not shown) are

basically similar to the results for the full sample.

The point estimates are quite similar overall, given standard errors.47 However, a few differ-

ences are worth noting. First, mobility is much less sensitive to seniority in the high education

sample. Second, JC responds more positively to outside offers and more negatively to µ in the

high education sample. Third, the relative importance of µ and η in the EE equation are reversed

in the two subsamples. Fourth, unemployment is less common for the high education sample. The

46See Solon (1999) for a survey of the literature on family correlations in economic outcomes.
47We modified the bootstrap standard error procedure to avoid computational problems associated with the rela-

tively small size of the low education and the high education subsamples. Specifically, we computed each parametric
bootstrap replication using double the size of the corresponding PSID subsample. The reported standards errors are√
2 times the standard deviation of the parameter estimates across the 300 bootstrap replications.
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decompositions of the experience profile of wages in Web Appendix Figures A1 and A2 show more

growth in υ with t in the educated sample: .149 versus .115 after 35 years. Both σω and σω1 are

considerably larger for the higher education sample, and autoregressive parameters ρυ and ρω are

also larger. These differences result in a much larger contribution of ω to the variance of wages

and earnings for the more highly educated. The standard deviation of the i.i.d. component of

hours is much larger for the less educated sample (.17 versus .10), which probably reflects greater

variation in overtime hours and in unemployment spells. On the other hand, σξ is larger for the

high education group.

Web Appendix Figures A3 through A6 report impulse response functions for the two groups.

They are similar to those for the full sample.

The variance decompositions show that shocks associated with mobility and employment tran-

sitions play a key role in the variance of lifetime earnings, wages, and hours for both samples. (Web

Appendix Tables A1-A4.) They account for 49.9% of variance in the sum of earnings for the high

education group and 40.8% for low education group. The corresponding values for wages are 55.8

and 65.3%. Employment shocks and i.i.d. hours shocks are more important for the low education

sample. The job-specific hours component ξ is more important for the high education sample. The

persistent wage component ωit makes a big variance contribution in the high education sample and

a small one in the low education, while the roles are reversed in the case of µ, which plays only a

small role in the high education sample. (The point estimate of the contribution of µ to the variance

of wages is actually a small negative.) Within-group variation in education is important in the high

education sample. Although we have focused on the percentage contributions, it is important to

point out that the variance of the sum of lifetime earnings is much larger for the high education

sample: $1,003,509 versus $142,589 in year-2000 dollars.

7 A Multinomial Model of Employment Transitions and
Job Changes

In this section we replace the sequential model of employment transitions and job-to-job changes

consisting of equations (6) and (7) with a multinomial choice model of the decision to stay in the

current job, move to another job, or leave employment. Let the latent variable EES∗ denote the

value of remaining employed in the current job relative to the value of unemployment:

EES∗
it = Xi,t−1γ

EES

X + γEE
S

TENTENi,t−1 + γEE
S

ED min(EDi,t−1, 9) + γEE
S

ws wage
s

it + δEE
S

υj(t−1)υij(t−1)(19)

+δEE
S

µ µi + δEE
S

η ηi + εEE
S

it given Ei,t−1 = 1.

35



The equation for EES∗
it has the cleanest interpretation if continuing with a firm is entirely up to the

worker. In reality, the coeffi cients capture both the effects of variables on the worker’s valuation of

the current job relative to unemployment and effects that operate through the worker’s net value

to the firm. The shocks εEE
S

it are also a mix of preference shocks and shocks to the productivity

of the job match that are not fully reflected in the wage. A large negative shock to εEE
S

it could

arise from a temporary labor supply shock or from a decline in firm productivity that leads to a

layoff.48 Employment duration and tenure both capture state dependence that arises from locational

decisions, arrangements within the household, employment-based social networks, and other factors.

In the case of employment duration, habit formation in work preferences could play a role. In the

case of TENi,t−1, part of the effect is the value of tenure-related increases in non-wage fringe benefits,

such as pensions and paid vacation. Part is through the effects of TENi,t−1 on the layoff probability

that arise because firms share in specific human capital investments and/or follow seniority-based

layoff policies. Note that all of the determinants of wage
s

it are allowed to have an independent

influence on EES∗
it , with the exception of ωit, which affects log wages in all jobs equally.

EEQ∗
it is the value of moving to a new job relative to the utility of unemployment:

EEQ∗
it = Xi,t−1γ

EEQ

X + γEE
Q

TENTENi,t−1 + γEE
Q

w′ wage
′

it + δEE
Q

υ′j′(t)υ
′
ij′(t)(20)

+δEE
Q

µ µi + δEE
Q

η ηi + εEE
Q

it given Ei,t−1 = 1,

where υ′ij′(t) is a draw of the job-specific component for an alternative job j
′(t) in t and wage

′
it is

the value of wagelatit evaluated at υij(t) = υ′ij′(t) and TENi,t−1 = 0. We include TENi,t−1 because it

may influence the costs of changing jobs. The coeffi cient δEE
Q

υ′j′(t) allows υ
′
ij′(t) to influence job-to-job

mobility independently of its effect on wage
′
it.
49 The odds of actually getting an alternative offer

are reflected in the parameters.

The relationship between εEE
Q

it and εEE
S

it depends on the relative importance of transitory avail-

ability of job opportunities versus labor supply preferences in determining the employment of male

household heads at a point in time. If labor supply preferences are key, then one would expect a

positive correlation between the two, since both compare the value of employment opportunities to

unemployment. However, if labor market frictions and job destruction is important, then the two

may be only weakly correlated. We assume that for male household heads frictions dominate, so

that εEE
Q

it and εEE
S

it are uncorrelated. Keep in mind that both equations contain the permanent

heterogeneity components µi and ηi.

48It would be interesting in future work to expand the model to distinguish between quits and layoffs on the basis
of self reports.
49An independent effect should arise from at least two mechanisms. First, υ′ij′(t) is job-specific and differs in

persistence from the other wage components. Second, to the extent that it reflects match-specific productivity that
is shared by the worker and firm, it will also be positively associated with the firm’s valuation of the match conditional
on the wage and thus be negatively related to the layoff probability. Workers should value the security.
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The indicator EES
it for whether the worker remains employed in his current job is determined

by

(21) EES
it = I(EES∗

it > EEQ∗
it and EES∗

it > 0) given Ei,t−1 = 1

The indicator EEQ
i for whether the worker remains employed and moves to a new job is

(22) EEQ
it = I(EES∗

it < EEQ∗
it and EEQ∗

it > 0) given Ei,t−1 = 1.

The indicator EEit is EES
it + EEQ

it . The indicator JCit for a job change conditional on remaining

employed is EEQ
it |EEit = 1. Since a job-to-job move involves a comparison of EES∗ and EEQ∗

and well as the comparison of the value of changing jobs to unemployment, variables and error

components influence EEit, EE
Q
it and JCit through both (19) and (20).

7.1 Results for the Multinomial Model

Web Appendix B presents the results for the multinomial model. Here we provide a few highlights.

The predictions and fit of the model to the PSID are similar to those for the baseline model. Both

employment duration and tenure raise EE, and tenure has a substantial negative effect on JC.

The values of υij(t−1) and υ′i,j′(t) both increase the probability that the worker remains employed.

As in the baseline model, the probability that a worker moves to a new job depends negatively on

υij(t−1) and positively on υ′ij′(t), but υ
′
ij′(t) is relatively more important in the multinomial model.

Overall, the estimates of the response of earnings, the wage rate, and hours to various shocks are

very similar to those for the baseline model. In particular, an unemployment shock leads to a

decline in log earnings of -.58 due to declines in both hours and wages. Hours recover quickly, but

the wage loss persists. The positive effect of an unemployment shock on the variance of the first

difference in earnings is more persistent in the multinomial model. General skill accumulation, job

shopping (i.e., growth in υij(t)), and accumulation of tenure account for 79.3%, 7.0%, and 13.7% of

the implied .837 increase in log wages over the first 30 years of a career. The contribution of job

shopping is smaller than in the baseline model and seems implausibly low to us.

Qualitatively, the multinomial results are similar to those for the baseline model, in that shocks

associated with employment and job mobility play a very large role. They account for 30.1%,

38.0%, and 54.3% of the variance of lifetime earnings, lifetime wage rates, and lifetime hours. These

values are large, but are smaller than the baseline estimates. On the other hand, the permanent

heterogeneity components η and especially µ play a more important role than in the baseline model.

The µ component accounts for 21.1% of the variance in earnings and 10.9% of the variance in wages

and 22.0% of the variance in hours, which compare to 15.2%, 4.33%, and 32.5% in the baseline. The
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larger contribution of µ to earnings and wages stems from the fact that the factor loading δwµ on µ

in the wage equation is larger in the multinomial model than in the baseline model. The standard

deviation of υij(t) is also smaller in the multinomial case than in the baseline model, which helps

explain the reduced contribution of employment and job mobility.

8 Conclusion

In this paper, we study earnings across individuals and over careers. To this end, we construct a

model of earnings dynamics from equations governing employment transitions, job changes with-

out unemployment, wages, and work hours. Since both state dependence and heterogeneity are

important and one cannot determine the role of one without accounting for the other, our models

incorporate state dependence in employment, job changes, and wages, while also including multiple

sources of unobserved heterogeneity as well as job-specific error components in both wages and

hours. These turn out to play an important role in the variance of lifetime earnings. The equations

of our model can be viewed as first approximations to the decision rules suggested by structural

models of employment transitions, job search, and labor supply, while at the same time providing

a rich statistical description of the earnings process. Our simulation-based estimation strategy

permits us to handle a highly unbalanced sample in the context of a dynamic model that mixes dis-

crete and continuous variables and allows for both state dependence and multifactor heterogeneity

and for measurement error. Vidangos (2009) shows the potential for using models of the type we

develop by studying the implications of a related multi-equation model of family income for precau-

tionary behavior, welfare, and the value of insurance within the context of a lifecycle consumption

model.50

Our results address many important questions concerning wages, hours and earnings over a

career. In accord with many other studies, we find that education, race, and unobserved perma-

nent heterogeneity all play important roles in employment transitions and job changes and that

labor supply of male household heads is inelastic. By accounting for both unobserved individual

heterogeneity and job-specific heterogeneity, we are able to show that a substantial portion of the

strong negative relationship between job seniority and job mobility found in many previous studies

is causal. Job changes are induced by high outside offers and deterred by the job-specific wage com-

ponent of the current job. Job offers are strongly positively related to the job-specific component

on the current job, in contrast to the usual assumption in the search literature that offers are drawn

at random. The dependence may arise because firms base offers to prospective new hires in part

on wages in the prior firm, because the job-specific component partially reflects demand shocks af-

50He allows for additional sources of variation in family income such as health and disability shocks but uses a
simpler model of job mobility. See also Low et al (2010).
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fecting jobs in a narrowly defined industry, occupation, and region, and/or because an individual’s

job search network depends on the quality of his current job.

Overall, wages are highly persistent but do not contain a random walk component. The persis-

tence results from permanent heterogeneity, the job-specific wage component, and strong persistence

in the stochastic component that reflects the value of the worker’s general skills.

We also contribute to the displaced workers literature by providing a full decomposition of

earnings losses from unemployment. Short-term earnings losses from unemployment are dominated

by hours and long-term losses are dominated by wages, with lost tenure, movement to a lower paying

job, and a drop in the autoregressive skill component all playing a role. We find general human

capital accumulation is the dominant source of wage growth over a career, although job tenure and

job mobility both play significant roles.

Finally, job mobility and unemployment play a key role in the variance of career earnings. They

operate primarily by leading to large changes in job-specific components of wages and hours rather

than through their direct effects on wages and hours. For whites in our full sample, job-specific

hours and wage components, unemployment shocks, and job shocks together account for 43.5%,

53.5%, and 59.2% of the variance in lifetime earnings, wages, and hours, respectively. Job-specific

wage shocks are more important than job-specific hours shocks for earnings. Job-specific wage

shocks dominate for wages, with employment shocks also playing a substantial role. For hours,

job-specific hours shocks dominate. Education accounts for about 30% of the variance in lifetime

earnings and wages but makes little difference for hours. The combined variance contribution of

variables determined by the first year of employment (η, µ, and EDUC and the initial draws ωi1

and υi1 of ωit and υit) is 54.9% for lifetime earnings, 44.8% for lifetime wages and 39.1% for lifetime

hours.

There are number of extensions to the model that would be worth exploring. Thus far, we simply

remove year effects from wages, hours, and earnings, but it would be natural to add aggregate shocks

to the model. It would also be natural to extend the model to explore changes in the stability of

earnings, building on work by Gottschalk and Moffi tt (1994, 2008), Haider (2001), Shin and Solon

(2008), DeBacker et al. (2011), and others. This would require a very different auxiliary model.

With matched employer-employee data such as those used by Abowd et al. (1999) and Bagger et

al. (2011), one could distinguish firm-specific risk associated with observed as well as unobserved

variables from job match specific risk. A much more ambitious extension would be to construct a

model of the household income of an individual that incorporates marriage, divorce, and death of

a spouse. This will be pursued in separate work.

Given the large number of issues that the paper already addresses, we do not attempt the

formidable task of seeking to identify how much of the stochastic variation in earnings that we
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analyze is anticipated by agents, how far in advance they anticipate it, how much is insured, and

how much is an endogenous response to changes in opportunity sets or preferences. Adding a

family income model (with private and public transfers) as in Vidangos (2009) gets partially at

the question of insurance. Dealing with expectations is more diffi cult. One needs either data

on expectations or an expanded model that incorporates decisions that depend on and/or reveal

the information set of the agent, such as consumption choices. Work by Blundell and Preston

(1998), Blundell, Pistaferri, and Preston (2008), Cunha, Heckman, and Navarro (2005), Cunha and

Heckman (2006), and Guvenen and Smith (2010) illustrate the latter approach. A fully structural

model that incorporates search frictions and hours constraints is probably needed to separate the

role of preferences from labor market constraints.
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10 Appendix 1: Decomposing Career Wage Growth into
the Effects of General Human Capital, Tenure, and Job
Shopping

Let wageoit ≡ (wageit − δwµµi − γwBLACKBLACKi − γwEDUCEDUCi). Wage growth over a career is
the sum of the effect of general human capital accumulation, the accumulation of job tenure, the

gains from job shopping, and the cumulative effect of unemployment shocks on the general wage

component ωit. That is,

E(wageoit|t) = [tγwt + t2γwt2 + t3γwt3] + E(P (TENit)|t)γwTEN + E(υij(t)|t) + E(ωit|t)

where the terms are implictly conditional on employment Eit = 1, [tγwt + t2γwt2 +t3γwt3] is the value

of the general human capital cubic polynomial in potential experience t, E(P (TENit)|t)γwTEN is the
expected value of the tenure polynomial, and E(υij(t)|t) and E(ωit|t) are the expected values of the
job-match and general productivity components. We use simulated data from the model to compute

the values of E(ωit|t), E(υij(t)|t) and E(P (TENit)|t)γ̂wTEN , where γ̂wTEN is taken from Altonji and

Williams (2005). Figure 1 graphs

E(wageoit|t), [tγwt + t2γwt2 + t3γwt3],E(P (TENit)|t)γwTEN , and E(υij(t)|t)

with value at t = 1 set to 0 in each case. E(ωit|t) takes on the values -.008, -.017, -.025, -.021, and
-.012 when t is 5, 10 20, 30, and 40, respectively. It is not displayed to reduce clutter.

The above calculations include both employed and unemployed individuals and thus reflect

actual wages for the employed and the “latent” wage for the unemployed, for whom TENit is

0. The values of E(ωit|t, Eit = 1),E(wageoit|t, Eit = 1), [tγwt + t2γwt2 + t3γwt3],E(P (TENit)|t, Eit =

1)γwTEN ,and E(υij(t)|t, Eit = 1) are very similar to unconditional values and are not reported. The

small differences reflect the fact that the distribution of ωit, υij(t), and TENit at each value of t is

related to employment status. Note that part of the relationship between t and wages in panel

data restricted to employed workers is due to selection. The positive dependence of employment

on the wage means that selection into employment on µ, υ, and ω varies slightly with experience.

For example, E(µ|t, Eit = 1) declines by −.01 over the first 10 years and -.016 over the first 30

years. Our estimates of the experience profile account for selection bias stemming from all of the

error components.
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Variable Obs. Mean St. Dev. Min Max

Potential Experience 31,330 17.735 9.582 1 40

Black 31,330 0.062 0.242 0 1

Education (years) 31,330 13.336 2.307 6 17
Et 31,330 0.966 0.181 0 1

Et | Et-1 = 1  (EEt) 28,170 0.975 0.157 0 1

Et | Et-1 = 0  (UEt) 872 0.774 0.418 0 1

JCt | Et-1 = 1 28,170 0.112 0.315 0 1

EDt 30,742 10.416 7.959 0 42.25

UDt 31,330 0.043 0.257 0 7

TENt 30,065 8.420 8.015 0 42.25

wage*t | Et=1 (a) 30,265 2.737 0.494 1.14 4.96

hours*t 
(a) 31,330 7.760 0.284 5.30 8.42

earn*t 
(a) 31,330 3.546 0.658 -5.17 6.54

Table 1
Descriptive Statistics - PSID SRC Sample

The table presents descriptive statistics for key variables in our baseline PSID SRC sample. 
(a) Economy-wide year effects have been removed from variables wage*t, hours*t, and earn*t by first 
regressing measured hours, wages, and earnings on a cubic in potential experience, BLACK, EDUC, 
and a set of year dummies, and subtracting the estimated year effects. The reference year is 1996. The 
effects of the potential experience polynomial, BLACK, or EDUC have not been removed from these 
variables. See discussion in Section 4.
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I II III IV V VI VII VIII IX X

Equation / 
Variable

Parameter
Point 

Estimate
Bootstrap 

Mean
Standard 

Error
Marginal 

Effect
Point 

Estimate
Standard 

Error
Marginal 

Effect
Point 

Estimate
Standard 

Error
Marginal 

Effect

E-E Equation (Eq. 6)

(cons) γEE
0 1.386 1.193 (0.241) 1.371 (0.161) 1.231 (0.307)

(t-1) γEE
t -0.026 -0.009 (0.015) 0.0007 -0.040 (0.012) 0.0030 -0.042 (0.017) 0.0017

(t-1)2/100 γEE
t2 0.110 0.067 (0.040) 0.124 (0.031) 0.126 (0.050)

min(EDt-1,9) γEE
ED 0.028 0.030 (0.025) 0.0017 0.077 (0.016) 0.0055 0.085 (0.022) 0.0039

BLACK γEE
BLACK -0.154 -0.127 (0.113) -0.0091

EDUC γEE
EDUC 0.055 0.050 (0.015) 0.0032 0.034 (0.017) 0.0024 0.043 (0.018) 0.0020

wages
t γEE

ws 0.073 0.052 (0.115) 0.0043 -0.125 (0.101) -0.0088 -0.058 (0.102) -0.0027

μ δEE
μ 0.297 0.306 (0.127) 0.0176 0.185 (0.065) 0.0131 0.382 (0.089) 0.0175

η δEE
η -0.480 -0.403 (0.095) -0.0284 -0.387 (0.061) -0.0274 -0.083 (0.097) -0.0038

U-E Equation (Eq. 8)

(cons) γUE
0 1.633 1.384 (0.489) 1.458 (0.514) 1.595 (0.520)

(t-1) γUE
t -0.126 -0.101 (0.057) 0.0269 -0.125 (0.050) 0.0246 -0.103 (0.053) 0.0213

(t-1)2/100 γUE
t2 0.339 0.285 (0.175) 0.292 (0.132) 0.296 (0.172)

BLACK γUE
BLACK -0.052 -0.026 (0.247) -0.0157

EDUC γUE
EDUC 0.026 0.023 (0.030) 0.0079 0.052 (0.041) 0.0163 0.027 (0.036) 0.0072

μ δUE
μ 0.311 0.241 (0.177) 0.0935 0.348 (0.114) 0.1094 0.120 (0.161) 0.0324

η δUE
η 0.105 0.066 (0.171) 0.0315 -0.044 (0.151) -0.0138 0.016 (0.152) 0.0042

JC Equation (Eq. 7)

(cons) γJC
0 -0.505 -0.470 (0.211) -0.365 (0.178) -1.343 (0.399)

(t-1) γJC
t -0.005 -0.011 (0.018) -0.0051 0.005 (0.014) -0.0051 0.693 (0.447) -0.0061

(t-1)2/100 γJC
t2 -0.074 -0.051 (0.048) -0.078 (0.035) -0.316 (0.145)

TENt-1 γJC
TEN -0.067 -0.058 (0.023) -0.0129 -0.112 (0.023) -0.0234 -0.017 (0.023) -0.0032

BLACK γJC
BLACK 0.026 0.009 (0.107) 0.0049

EDUC γJC
EDUC -0.022 -0.021 (0.013) -0.0042 -0.021 (0.016) -0.0045 -0.021 (0.019) -0.0039

υt-1 δJC
υ-1 -0.825 -0.786 (0.154) -0.0502 -0.797 (0.165) -0.0497 -0.574 (0.175) -0.0324

υ't δJC
υ 0.490 0.480 (0.128) 0.0334 0.294 (0.134) 0.0184 0.818 (0.144) 0.0548

μ δJC
μ -0.068 -0.114 (0.129) -0.0131 -0.029 (0.062) -0.0061 -0.526 (0.163) -0.0963

η δJC
η 0.538 0.527 (0.108) 0.1041 0.440 (0.099) 0.0920 0.404 (0.169) 0.0740

Table 2 continued on next page.

Table 2

Baseline Model Estimates 

All SRC Whites with Low Education
Whites with High 

Education
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I II III V VI VIII IX

Equation / Variable Parameter
Point 

Estimate
Bootstrap 

Mean
Standard 

Error
Point 

Estimate
Standard 

Error
Point 

Estimate
Standard 

Error

Wage Equation (Eq. 1 - 5)

Constant 0.001 0.008 (0.054) -0.005 (0.086) -0.034 (0.091)

(t-1) γw
t 0.064 0.066 (0.005) 0.064 (0.005) 0.061 (0.005)

(t-1)2/10 γw
t2 -0.021 -0.021 (0.003) -0.022 (0.002) -0.019 (0.003)

(t-1)3/1000 γw
t3 0.023 0.023 (0.004) 0.026 (0.004) 0.018 (0.005)

BLACK γw
BLACK -0.224 -0.224 (0.029)

EDUC γw
EDUC 0.105 0.105 (0.003) 0.091 (0.007) 0.117 (0.006)

Tenure polynomial yes yes yes

μ δw
μ 0.076 0.091 (0.036) 0.142 (0.026) 0.125 (0.035)

υt-1 ρυ 0.693 0.680 (0.050) 0.608 (0.052) 0.716 (0.055)
ευ συ 0.276 0.282 (0.009) 0.278 (0.008) 0.292 (0.012)

ευ1 συ1 0.173 0.171 (0.019) 0.172 (0.018) 0.089 (0.007)
ωt-1 ρω 

(a)
0.908 0.910 (0.025) 0.865 (0.042) 0.921 (0.021)

1-Et γω1-Et -0.135 -0.138 (0.013) -0.172 (0.013) -0.093 (0.014)

1-Et-1 γω1-Et-1 0.048 0.053 (0.017) 0.073 (0.021) 0.016 (0.021)

εω σω 0.088 0.084 (0.005) 0.068 (0.005) 0.096 (0.008)
εω1  (Black, Low Education) σω1 

(a) 
0.154 0.246 (0.061)

εω1  (Black, High Education) σω1 
(a) 

0.237 0.276 (0.054)

εω1  (White, Low Education) σω1 
(a) 

0.260 0.298 (0.024) 0.212 (0.020)

εω1  (White, High Education) σω1 
(a) 

0.316 0.322 (0.019) 0.341 (0.018)

Hours Equation (Eq. 9)

constant γh
0 -0.450 -0.446 (0.015) -0.452 (0.020) -0.218 (0.023)

(t-1) γh
t 0.009 0.009 (0.002) 0.009 (0.003) 0.008 (0.002)

(t-1)2/10 γh
t2 -0.003 -0.003 (0.001) -0.002 (0.001) -0.003 (0.001)

(t-1)3/1000 γh
t3 0.002 0.002 (0.002) 0.001 (0.002) 0.001 (0.002)

BLACK γh
BLACK -0.054 -0.055 (0.015)

EDUC γh
EDUC 0.011 0.010 (0.002) 0.017 (0.003) 0.012 (0.003)

Et γh
E 0.430 0.431 (0.011) 0.436 (0.012) 0.450 (0.010)

εξ σξ 0.163 0.176 (0.014) 0.131 (0.023) 0.185 (0.010)
waget

lat γh
w -0.081 -0.084 (0.016) -0.193 (0.020) -0.050 (0.014)

μ δh
μ 0.097 0.096 (0.018) 0.130 (0.017) 0.053 (0.015)

η δh
η -0.012 -0.003 (0.023) -0.036 (0.016) 0.035 (0.029)

εh
σh 0.141 0.139 (0.003) 0.169 (0.003) 0.103 (0.003)

Earnings Equation (Eq. 10)

constant γe
0 -0.007 -0.007 (0.001) -0.007 (0.002) 0.016 (0.003)

waget
lat γe

w (b) 
1.000 1.000 1.000

hourst γe
h 

(b) 
1.000 1.000 1.000

et ρe 0.624 0.625 (0.009) 0.579 (0.011) 0.673 (0.009)

εe
σe 0.169 0.169 (0.002) 0.179 (0.002) 0.152 (0.002)

(a) Estimate obtained using additional moment conditions. See discussion in Section 4.
(b) Imposed.

The table presents estimation results for our base model, estimated on the full SRC sample and two subsamples: SRC Whites with Education<=12, 
and SRC Whites with Education>12.  Estimates were obtained by Indirect Inference, unless indicated otherwise. Marginal effects are evaluated at 
the mean of EE, UE, and JC, respectively.  The marginal effects of potential experience accounts for the quadratic term.  The marginal effects of υt-1 

and υ't are the effect of a one standard deviation change based on the standard deviations for the particular sample.  Parametric bootstrap standard 
errors are in parentheses. Bootstraps are based on 300 replications. As explained in Footnote 23 in the paper, the hours equation includes a second 
constant that has no effect on earn* it. The point estimates of that constant are .049, .047, and -.201, for the Full, Low Education, and High Education 
samples, respectively.

Table 2 (cont.)
Baseline Model Estimates 

All SRC
Whites with Low 

Education
Whites with High 

Education
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I II III
Dependent Variable: Et 

(a) Et 
(b) JCt 

(c)

Independent Variable:

Black -0.0073 -0.0156 -0.0020
-0.0117 -0.0190 -0.0131
(0.0039) (0.0477) (0.0079)

Education 0.0018 0.0055 -0.0011
0.0028 0.0197 -0.0034
(0.0004) (0.0070) (0.0008)

(t-1)/10 -0.0241 -0.2787 -0.0604
-0.0017 0.0131 -0.0946
(0.0043) (0.0597) (0.0083)

(t-1)2/100 0.0029 0.0729 0.0137
-0.0013 -0.0088 0.0221
(0.0010) (0.0158) (0.0020)

EDt-1 0.0027
0.0022
(0.0002)

UDt-1 -0.0375
-0.0364
(0.0232)

TENt-1/10 -0.0867
-0.0809
(0.0030)

Observations 2,620,218 79,782 2,558,080
25,749 793 24,712

R 2 0.01 0.03 0.07
0.01 0.02 0.06

Rmse 0.15 0.40 0.29
0.15 0.40 0.29

(a) Sample restricted to observations where Et-1=1.
(b) Sample restricted to observations where Et-1=0.
(c) Sample restricted to observations where Et=1 and Et-1=1.

Table 3a

(Estimates on simulated data in bold, estimates on PSID data in italics, standard errors for PSID estimates in parentheses.)

The table presents least-squares regressions comparing data simulated from our estimated baseline model and PSID data. Estimates 
on simulated data are in bold, estimates on PSID data are in italics, standard errors (for the PSID estimates) are in parentheses. The 
regressions on simulated data are based on a simulated sample that is 100 times as large as the PSID sample, but has the same 
demographic structure (by potential experience, race, and education) as the PSID sample.

Regressions Comparing Data Simulated from Estimated Baseline Model and PSID: Employment and Job Changes
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I II III IV V
Dependent Variable: wage*t 

(a) wage*t 
(a) hours*t earn*t earn*t

Independent Variable:

-0.0165 -0.2290 -0.0236 -0.0529
-0.0244 -0.2407 -0.0291 -0.0580
(0.0053) (0.0095) (0.0058) (0.0089)

0.0078 0.1071 0.0061 0.0218
0.0129 0.1032 0.0032 0.0230
(0.0006) (0.0010) (0.0007) (0.0011)

-0.0155 0.6332 0.0466 0.0687
-0.0352 0.6585 -0.0282 -0.0485
(0.0193) (0.0283) (0.0212) (0.0325)

-0.0011 -0.1873 -0.0162 -0.0266
0.0099 -0.2376 0.0186 0.0335
(0.0098) (0.0155) (0.0108) (0.0166)

0.0007 0.0194 0.0011 0.0032
-0.0008 0.0280 -0.0040 -0.0059
(0.0015) (0.0025) (0.0017) (0.0025)

0.3711
0.4055
(0.0184)

-0.2014
-0.1722
(0.0146)

0.0300
0.0280
(0.0031)

-0.0246 0.9740
-0.0003 0.9458
(0.0035) (0.0036)

0.7120
0.6497
(0.0064)

0.2120
0.2662
(0.0064)

-0.0163
-0.0107
(0.0043)

0.8553 
0.7648
(0.0073)

0.3381 
0.3635
(0.0066)

0.2735 
0.1633
(0.0063)

0.5660 
0.7159 
(0.0069)

0.2560 
0.1248 
(0.0068)

Observations 2,158,634 3,041,355 2,262,298 2,329,200 3,041,355
21,783 29,000 22,687 23,292 30,265

R 2 0.88 0.36 0.31 0.70 0.79
0.85 0.40 0.23 0.73 0.74

Rmse 0.17 0.41 0.21 0.34 0.28
0.18 0.38 0.21 0.32 0.31

(a) All observations in sample must satisfy Et=1.

wage*t-1

Table 3b

(Estimates on simulated data in bold, estimates on PSID data in italics, standard errors for PSID estimates in parentheses.)

Black

Education

t/10

t2/100

t3/1000

TENt/10

TENt
2/100

TENt
3/1000

wage*t

Regressions Comparing Data Simulated from Estimated Baseline Model and PSID: Wages, Hours, Earnings

earn*t-2

The table presents least-squares regressions comparing data simulated from our estimated baseline model and PSID data. Estimates on simulated data are in 
bold, estimates on PSID data are in italics, standard errors (for the PSID estimates) are in parentheses. The regressions on simulated data are based on a 
simulated sample that is 100 times as large as the PSID sample, but has the same demographic structure (by potential experience, race, and education) as the 
PSID sample.

wage*t-2

JCt

hours*t

hours*t-1

hours*t-2

earn*t-1
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I II III IV V VI VII VIII IX X XI

Variable εe εh εω  Composite η μ EDUC ξ υ E JC

Lifetime Earnings 5.8 1.7 9.6 43.5 -4.6 15.2 28.8 8.5 34.2 1.5 -0.7

(0.3) (0.1) (1.0) (3.4) (2.0) (4.3) (2.3) (1.5) (3.4) (0.4) (0.3)

Lifetime Wage 0 0 15.3 53.5 -5.9 4.3 32.7 0 53.1 1.2 -0.8

(0.0) (0.0) (1.6) (3.5) (2.3) (4.9) (3.4) (0.0) (3.6) (0.4) (0.4)

Lifetime Hours 0 3.6 0.5 59.2 1.6 32.5 2.7 54.7 1.1 3.6 -0.1

(0.0) (0.1) (0.2) (10.2) (4.1) (11.3) (0.8) (9.9) (0.6) (0.6) (0.1)

Table 4a

Baseline Model, Full SRC Sample

Contribution to Variance Breakdown of 'Composite'

Entries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings, wage, and hours, and are 
expressed as a percentage of the lifetime variance in the basecase. In the basecase we simulate of the full estimated model. To compute 
the contribution of a particular shock, we simulate the model again, setting the variance of a given shock to zero for all t. We then compute 
the variance of the appropriate variables. The difference relative to the basecase is the contribution of the given shock. Since the model is 
nonlinear, the contributions don't sum up to 100%. We normalize columns I to VII to sum to 100.  Column III is the combined contribution 

of the initial draw of ωi1 and the subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours 

components, employment and unemployment shocks, and job change shocks. In columns VIII through XI we decompose Column IV. 
Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with var(ξ) set to 0, X the marginal contribution of 
unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI displays the marginal contribution of job changes with Var(ξ) and 
Var(υ) set to 0, and no unemployment. The variance of the levels of lifetime earnings, wages, and hours are 572,490; 90,904; and 
253,829,319, respectively. Bootstrap standard errors are in parentheses.

Decomposition of Cross-Sectional Variance in Lifetime Earnings, Wage, and Hours (in Levels)
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I II III IV V VI VII VIII IX X XI XII

Variance

Variable /       
Potential Experience εe εh εω  Composite η μ EDUC ξ υ E JC

Earnings

t =  1 11.0 7.4 29.3 18.9 0.4 11.0 22.1 9.4 8.5 1.0 0 121.59

(0.4) (0.3) (3.2) (2.4) (0.4) (3.4) (1.2) (1.6) (1.9) (0.2) 0.0

t =  5 14.5 6.1 19.7 29.5 0.6 9.4 20.1 8.6 21.7 0.9 -1.6 265.90

(0.6) (0.3) (1.7) (2.3) (0.8) (3.1) (1.2) (1.4) (2.3) (0.2) (0.2)

t = 10 15.4 6.6 14.7 34.2 -1.5 10.5 20.0 8.3 26.9 1.0 -2.0 459.53

(0.8) (0.4) (1.3) (2.7) (1.1) (3.3) (1.3) (1.4) (2.7) (0.3) (0.3)

t = 20 15.4 6.9 12.3 38.4 -2.2 9.8 19.3 7.6 30.6 1.2 -1.1 760.92

(0.9) (0.5) (1.2) (2.6) (1.4) (3.1) (1.4) (1.4) (2.7) (0.3) (0.3)

t = 30 14.7 6.7 10.8 40.1 -1.5 10.3 18.8 7.7 32.1 0.7 -0.4 813.44

(0.8) (0.4) (1.1) (2.7) (2.1) (3.3) (1.5) (1.4) (2.7) (0.2) (0.2)

t = 40 15.4 6.6 11.2 40.9 -1.6 8.6 18.9 7.7 33.1 0.3 -0.2 788.89

(0.9) (0.5) (1.2) (2.6) (2.0) (3.3) (1.4) (1.4) (2.7) (0.2) (0.1)

Wage  

t =  1 0 0 52.7 16.8 0 3.4 27.1 0 16.8 0 0 17.34

(0.0) (0.0) (4.7) (3.4) 0.0 (4.0) (1.4) (0.0) (3.4) (0.0) (0.0)

t =  5 0 0 34.5 37.3 0.6 2.9 24.7 0 38.7 0.4 -1.8 34.98

(0.0) (0.0) (3.0) (3.0) (0.7) (3.6) (1.6) (0.0) (3.0) (0.2) (0.3)

t = 10 0 0 27.1 47.0 -2.1 2.7 25.2 0 48.1 0.8 -1.8 57.33

(0.0) (0.0) (2.4) (3.2) (1.1) (4.0) (2.1) (0.0) (3.1) (0.3) (0.4)

t = 20 0 0 21.7 53.0 -2.9 3.7 24.5 0 52.6 1.2 -0.8 94.09

(0.0) (0.0) (2.1) (3.2) (1.8) (3.9) (2.3) (0.0) (3.2) (0.4) (0.4)

t = 30 0 0 19.3 54.4 -1.3 3.6 24.0 0 53.8 0.9 -0.3 107.30

(0.0) (0.0) (2.1) (3.0) (1.9) (3.7) (2.3) (0.0) (3.1) (0.3) (0.2)

t = 40 0 0 20.2 54.5 -0.1 2.5 22.8 0 54.2 0.4 -0.1 116.59
(0.0) (0.0) (2.2) (3.1) (2.1) (3.8) (2.5) (0.0) (3.1) (0.2) (0.1)

Hours

t =  1 0 29.5 0.9 48.0 2.9 15.0 3.8 37.1 0.2 10.6 0 356441.00

(0.0) (1.4) (0.3) (5.8) (1.8) (5.0) (0.3) (5.6) (0.1) (0.4) (0.0)

t =  5 0 32.0 0.8 48.3 2.6 15.1 1.2 42.0 0.3 5.9 0.1 351119.46

(0.0) (1.4) (0.3) (6.2) (1.6) (5.3) (0.4) (6.4) (0.3) (1.0) (0.0)

t = 10 0 32.2 0.6 48.6 1.9 15.8 1.0 42.4 0.3 5.7 0.2 372688.78

(0.0) (1.5) (0.2) (6.3) (1.4) (5.3) (0.4) (6.2) (0.3) (0.6) (0.1)

t = 20 0 32.3 0.5 48.5 1.4 16.0 1.3 42.1 0.2 6.2 0.1 377689.96

(0.0) (1.4) (0.2) (6.5) (2.0) (5.5) (0.5) (6.5) (0.4) (0.6) (0.0)

t = 30 0 33.3 0.6 46.9 3.0 14.9 1.3 43.6 0.2 3.1 0.0 353181.61

(0.0) (1.5) (0.2) (6.4) (1.6) (5.5) (0.5) (6.4) (0.4) (0.6) (0.0)

t = 40 0 34.4 0.6 47.4 0.3 15.7 1.6 46.0 0.3 1.1 0.0 308747.09

(0.0) (1.6) (0.2) (7.0) (1.9) (5.8) (0.5) (6.9) (0.4) (0.6) (0.0)

Table 4b

Baseline Model, Full SRC Sample

Contribution to Variance Breakdown of 'Composite'

Entries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage, and hours for a cross section of simulated individuals 
with potential experience t.  The contribution is expressed as a percentage of the variance in the basecase. In the basecase we simulate the full estimated model. 
To compute the contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for all t. We then compute the 
variance of the appropriate variables at the specified value of t. The difference relative to the basecase is the contribution of the given shock. Since the model is 
nonlinear, the contributions don't sum up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the initial draw of 

ωi1 and the subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours components, unemployment shocks, and job change 

shocks. In columns VIII through XI we decompose Column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with var(ξ) set to 0, X 
is the marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI is the marginal contribution of job changes with Var(ξ) 
and Var(υ) set to 0, and no unemployment. Column XII is the cross-sectional variance of simulated earnings, wage, and hours, across individuals with potential 
experience t. Bootstrap standard errors are in parentheses.

Decomposition of Cross-Sectional Variance in Earnings, Wage, and Hours in Levels at Different t (Potential Experience)
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Appendix Table 1
Composition of PSID SRC Sample before Sample 
Selection Based on Employment Status.
Emp. Status Percentage
Working 91.0
Temp. Laidoff 1.5
Unemployed 3.8
Retired 1.0
Disabled 1.2
Housewife 0.2
Student 1.1
Other 0.2

Appendix Table 2
Percentage of Observations Excluded Based on Employment Status, by Potential Experience (t)

t Percentage t Percentage t Percentage t Percentage

1 21.0 (a) 11 1.7 21 1.9 31 5.0
2 11.1 12 2.1 22 1.7 32 5.5
3 7.5 13 1.9 23 2.8 33 7.6
4 6.0 14 2.5 24 3.3 34 7.6
5 5.2 15 1.8 25 3.4 35 8.4
6 3.0 16 2.0 26 3.2 36 11.1
7 3.0 17 2.1 27 3.6 37 12.1
8 2.3 18 2.0 28 3.6 38 12.7
9 2.2 19 1.8 29 4.0 39 16.8
10 2.0 20 2.1 30 4.8 40 20.4 (b) 

(a) Of those excluded at t=1, 97.3% are students.
(b) Of those excluded at t=40, 70.8% are retired, 23.9% disabled.

The table presents the composition of the PSID 
sample, in terms of employment status, before we 
impose any sample restrictions based on employment 
status. The sample here meets all selection criteria 
which are not based on employment status.

The table presents the percentage of observations excluded, based on employment status at the survey date, 
for each value of potential experience (t).
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Figure 1
Decomposing the Experience Profile of Wages

Baseline Model, Full Sample

The figure displays the model’s decomposition of wage growth over a career (or the 
experience profile of log wages) into the contributions of job shopping (the mean value 
of the job-specific wage component ν), the accumulation of tenure (the contribution of 
the mean value of tenure on the wage experience profile), and the accumulation of 
general human capital.
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Comparisons of PSID Data and Model Predictions by Potential Experience (t)

The figure compares standard deviations and means of key variables in our baseline PSID sample 
against the corresponding model predictions. All panels display the 95 percent confidence interval esti-
mates of sample statistics based on the PSID to point estimates from the model. In all panels, each statis-
tic corresponding to potential experience t was actually calculated using potential experience t-1, t, and 
t+1. Panels (a), (b), and (c) display the standard deviations of wage*it, hours*it, and earn*it. The units in 
the vertical axis of those three panels are thus standard deviations of the log. All other panels in the figure 
display means of the main variable specified in the corresponding panel heading. For example, panel (e) 
displays the mean of employment, Et, conditional on Et-1=1. 

(d) Employment (Et) (e) Employment−to−Employment Transition (EEt)

(f) Job Change if Employed (JCt | Et−1=1) (g) Unemployment−to−Employment Transition (UEt)

(h) Employment Duration (EDt) (i) Unemployment Duration (UDt) (j) Tenure (TENt)

Potential Experience (t)

Potential Experience (t)
.6

.7
.8

.9
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Figure 3
Mean Response of Key Variables to Various Shocks at t=10

(a) Log Earnings Response

Potential Experience (t)

(b) Log Wage Response

Potential Experience (t)

(c) Log Hours Response

unemployment shock 1 st dev ω shock
job change + 1 st dev ν shock job change + 1 st dev ξ shock
job change shock

The �gure displays the response of the mean of log earnings, log wage, and log hours to various shocks that are 
imposed when potential experience t = 10. The shocks are an unemployment shock, a job change shock, a one-
standard-deviation shock to the autoregressive component of wages, a job change shock accompanied by a one-
standard-deviation shock to the job-speci�c wage component, and a job change shock accompanied by a one-
standard-deviation shock to the job-speci�c hours component. To construct the point estimates, we �rst use the 
model to simulate a large number of individuals through t = 9. We then impose the shock indicated in the �gures in 
period 10 on all individuals. After that, we continue the simulation in accordance with the model. The panels in the 
�gure show the mean paths of log earnings, log wages, and log hours relative to the base case. The base case repre-
sents the mean of the simulated paths in the absence of the speci�ed intervention in period 10.
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Figure 4

(b) Response of Cross−Sectional Variance of Log Earnings
to Various Shocks at t=10

1
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(a) Response of Cross−Sectional Variance of the First
Difference of Log Earnings to Various Shocks at t=10

Panel (a) in the �gure displays the response of the ratio of var(earnit – earni,t-1) to the baseline vari-
ance for the model, to various shocks that are imposed when potential experience t = 10. See note 
in Figure 3. Panel (b) displays the response of the ratio of var(earnit) to the baseline variance for the 
model.
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Web Appendix to “Modeling Earnings
Dynamics”, by Altonji, Smith and Vidangos

Web Appendix A: Variance Decompositions and Wage Ex-
perience Profile Decompositions, and Impulse Response Func-
tions, by Education Level
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I II III IV V VI VII VIII IX X XI

Variable εe εh εω  Composite η μ EDUC ξ υ E JC

Lifetime Earnings 6.1 2.8 1.9 40.8 -2.7 40.8 10.2 7.7 31.4 2.3 -0.5

(0.3) (0.2) (0.5) (3.7) (1.5) (3.7) (1.1) (2.3) (3.8) (0.7) (0.3)

Lifetime Wage 0 0 5.5 65.3 -4.9 23.1 11.1 0 63.4 2.3 -0.4

(0.0) (0.0) (1.1) (5.9) (2.7) (6.4) (1.6) (0.0) (5.9) (0.8) (0.5)

Lifetime Hours 0 5.3 1.2 44.8 5.8 41.0 2.0 35.2 6.4 3.7 -0.5

(0.0) (0.2) (0.3) (10.5) (4.4) (11.8) (0.7) (10.4) (1.6) (0.8) (0.2)

Table A1

Baseline Model, Sample of Whites with Low Education

Contribution to Variance Breakdown of 'Composite'

Entries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings, wage, and hours, and are 
expressed as a percentage of the lifetime variance in the basecase. In the basecase we simulate of the full estimated model. To compute 
the contribution of a particular shock, we simulate the model again, setting the variance of a given shock to zero for all t. We then compute 
the variance of the appropriate variables. The difference relative to the basecase is the contribution of the given shock. Since the model is 
nonlinear, the contributions don't sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of 

the initial draw of ωi1 and the subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours 

components, employment and unemployment shocks, and job change shocks. In columns VIII through XI we decompose Column IV. 
Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with var(ξ) set to 0, X the marginal contribution of 
unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI displays the marginal contribution of job changes with Var(ξ) and Var(υ) 
set to 0, and no unemployment. The variance of the levels of lifetime earnings, wages, and hours are 142,589; 30,763; and 246,280,494, 
respectively. Bootstrap standard errors are in parentheses.

Decomposition of Cross-Sectional Variance in Lifetime Earnings, Wage, and Hours (in Levels)
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I II III IV V VI VII VIII IX X XI XII

Variance

Variable / Potential 
Experience εe εh εω  Composite η μ EDUC ξ υ E JC

Earnings

t =  1 15.0 13.6 14.9 18.6 1.2 28.9 7.7 8.2 8.6 1.9 0 33.22

(0.4) (0.6) (2.8) (3.0) (0.6) (3.2) (0.7) (2.5) (1.8) (0.3) 0.0

t =  5 19.4 10.4 7.7 28.7 1.8 25.3 6.6 7.2 21.9 1.4 -1.8 71.62

(0.7) (0.7) (1.1) (2.6) (0.9) (2.9) (0.8) (2.2) (2.6) (0.3) (0.2)

t = 10 19.4 10.6 4.2 32.5 0.8 26.0 6.5 6.7 26.4 1.4 -2.0 123.27

(0.9) (0.7) (0.7) (2.9) (1.0) (2.8) (0.7) (2.1) (2.9) (0.4) (0.2)

t = 20 18.3 10.5 4.4 36.0 -1.9 26.4 6.3 6.4 28.6 2.1 -1.1 198.01

(0.9) (0.8) (0.7) (2.9) (1.5) (2.8) (0.8) (2.1) (3.1) (0.5) (0.3)

t = 30 18.5 10.9 4.9 35.3 0.7 23.8 5.9 7.0 27.4 1.3 -0.4 234.73

(0.8) (0.7) (0.7) (2.7) (1.9) (2.5) (0.8) (2.0) (2.9) (0.4) (0.2)

t = 40 18.1 11.7 4.1 37.4 -0.8 23.0 6.5 7.0 30.1 0.5 -0.2 233.00

(1.0) (0.7) (0.7) (3.0) (1.3) (2.8) (0.8) (2.2) (3.1) (0.3) (0.1)

Wage  

t =  1 0 0 44.8 26.2 0 18.8 10.2 0 26.2 0 0 5.47

(0.0) (0.0) (7.2) (5.2) 0.0 (6.8) (1.2) (0.0) (5.2) (0.0) (0.0)

t =  5 0 0 21.4 53.6 1.1 15.3 8.6 0 53.8 1.0 -1.3 12.34

(0.0) (0.0) (3.0) (4.0) (1.0) (5.2) (1.1) (0.0) (4.0) (0.3) (0.4)

t = 10 0 0 13.6 63.5 -1.6 16.3 8.2 0 62.8 1.6 -0.9 20.59

(0.0) (0.0) (2.0) (4.5) (1.5) (5.0) (1.1) (0.0) (4.4) (0.5) (0.5)

t = 20 0 0 11.2 67.8 -4.1 17.5 7.7 0 65.3 2.8 -0.3 32.69

(0.0) (0.0) (1.8) (5.0) (2.1) (4.9) (1.1) (0.0) (4.9) (0.8) (0.5)

t = 30 0 0 11.2 65.0 0.9 15.4 7.5 0 62.8 2.2 0.0 38.28
(0.0) (0.0) (1.8) (4.6) (2.1) (4.8) (1.0) (0.0) (4.6) (0.7) (0.3)

t = 40 0 0 12.1 65.3 1.2 14.0 7.5 0 64.2 1.2 0.0 43.51
(0.0) (0.0) (1.8) (4.6) (2.0) (4.8) (1.1) (0.0) (4.6) (0.5) (0.2)

Hours

t =  1 0 39.3 2.7 36.0 4.5 16.8 0.6 22.8 1.3 11.9 0 396855.57
(0.0) (1.8) (0.6) (6.6) (1.8) (5.1) (0.2) (6.7) (0.3) (0.5) (0.0)

t =  5 0 41.5 1.8 35.0 3.1 17.8 0.7 25.4 3.4 5.8 0.4 371952.57
(0.0) (2.2) (0.4) (7.1) (1.5) (5.6) (0.3) (7.3) (0.8) (0.8) (0.1)

t = 10 0 42.2 1.4 35.9 2.7 17.2 0.7 26.2 3.7 5.4 0.5 394208.87
(0.0) (2.1) (0.3) (7.2) (1.6) (5.6) (0.4) (7.4) (1.1) (0.6) (0.2)

t = 20 0 42.2 1.1 36.0 2.5 17.3 0.9 25.9 3.5 6.4 0.2 415089.06
(0.0) (2.2) (0.3) (7.4) (1.6) (5.7) (0.4) (7.5) (1.2) (0.7) (0.1)

t = 30 0 42.8 1.0 34.1 4.6 16.8 0.7 26.5 3.7 4.0 -0.1 405933.38
(0.0) (2.3) (0.3) (7.3) (1.6) (5.8) (0.4) (7.5) (1.3) (0.7) (0.1)

t = 40 0 44.9 1.3 32.0 2.6 17.7 1.5 27.5 3.4 1.2 0.0 367668.59
(0.0) (2.3) (0.3) (7.8) (2.0) (5.9) (0.4) (7.9) (1.2) (0.6) (0.1)

Table A2

Baseline Model, Sample of Whites with Low Education

Contribution to Variance Breakdown of 'Composite'

Decomposition of Cross-Sectional Variance in Earnings, Wage, and Hours in Levels at Different t (Potential Experience)

Entries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage, and hours for a cross section of simulated individuals 
with potential experience t.  The contribution is expressed as a percentage of the variance in the basecase. In the basecase we simulate the full estimated model. To 
compute the contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for all t. We then compute the variance of 
the appropriate variables at the specified value of t. The difference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the 
contributions don't sum up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the initial draw of ω i1 and the 

subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours components, unemployment shocks, and job change shocks. In 

columns VIII through XI we decompose Column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with var(ξ) set to 0, X is the 
marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI is the marginal contribution of job changes with Var(ξ) and 
Var(υ) set to 0, and no unemployment. Column XII is the cross-sectional variance of simulated earnings, wage, and hours, across individuals with potential 
experience t. Bootstrap standard errors are in parentheses.
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I II III IV V VI VII VIII IX X XI

Variable εe εh εω  Composite η μ EDUC ξ υ E JC

Lifetime Earnings 6.1 0.9 18.6 49.9 1.7 4.4 18.4 12.1 36.2 1.4 0.2

(0.4) (0.1) (2.0) (4.5) (2.4) (7.5) (2.4) (1.7) (3.7) (0.4) (0.3)

Lifetime Wage 0 0 26.3 55.8 0.7 -2.9 20.2 0 54.1 1.2 0.5

(0.0) (0.0) (2.6) (5.0) (1.4) (7.7) (2.8) (0.0) (4.9) (0.4) (0.4)

Lifetime Hours 0 2.0 0.2 79.4 2.7 14.2 1.6 76.7 0.7 2.1 -0.1

(0.0) (0.1) (0.2) (10.1) (8.0) (5.5) (0.6) (9.9) (0.3) (0.5) (0.0)

Table A3

Baseline Model, Sample of Whites with High Education

Contribution to Variance Breakdown of 'Composite'

Entries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings, wage, and hours, and are 
expressed as a percentage of the lifetime variance in the basecase. In the basecase we simulate of the full estimated model. To compute 
the contribution of a particular shock, we simulate the model again, setting the variance of a given shock to zero for all t. We then compute 
the variance of the appropriate variables. The difference relative to the basecase is the contribution of the given shock. Since the model is 
nonlinear, the contributions don't sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of 

the initial draw of ωi1 and the subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours 

components, employment and unemployment shocks, and job change shocks. In columns VIII through XI we decompose Column IV. 
Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with var(ξ) set to 0, X the marginal contribution of 
unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI displays the marginal contribution of job changes with Var(ξ) and Var(υ) 
set to 0, and no unemployment. The variance of the levels of lifetime earnings, wages, and hours are 1,003,509; 127,365; and 234,825,319, 
respectively. Bootstrap standard errors are in parentheses.

Decomposition of Cross-Sectional Variance in Lifetime Earnings, Wage, and Hours (in Levels)
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I II III IV V VI VII VIII IX X XI XII

Variance

Variable / Potential 
Experience εe εh εω  Composite η μ EDUC ξ υ E JC

Earnings

t =  1 9.7 3.8 42.0 17.9 0.4 13.5 12.7 14.4 2.8 0.6 0 249.04

(0.4) (0.2) (4.0) (1.5) (1.1) (4.5) (1.0) (1.4) (0.4) (0.3) 0.0

t =  5 15.0 3.7 29.6 27.2 2.3 10.5 11.7 11.7 15.0 0.8 -0.3 514.22

(0.7) (0.3) (2.5) (1.9) (1.1) (3.4) (1.1) (1.4) (1.9) (0.2) (0.2)

t = 10 15.5 3.7 24.3 36.7 1.5 5.7 12.6 12.3 24.2 0.7 -0.5 876.66

(0.9) (0.4) (2.0) (2.5) (1.3) (3.8) (1.2) (1.6) (2.4) (0.3) (0.3)

t = 20 15.2 4.3 20.7 46.3 1.6 0.1 11.8 11.6 34.1 1.0 -0.4 1454.26

(1.2) (0.4) (2.2) (3.9) (1.8) (6.0) (1.5) (1.6) (3.4) (0.3) (0.3)

t = 30 14.8 3.4 20.2 50.3 2.8 -1.6 10.2 10.3 39.3 0.7 0.0 1479.97

(1.2) (0.3) (2.3) (4.5) (1.9) (6.2) (1.6) (1.6) (3.9) (0.2) (0.1)

t = 40 15.7 4.1 18.5 50.6 4.6 -3.6 10.0 10.0 40.4 0.3 0.0 1196.74

(1.6) (0.4) (2.2) (4.4) (2.0) (5.9) (1.5) (1.6) (3.8) (0.2) (0.0)

Wage  

t =  1 0 0 67.8 5.0 0 10.5 16.7 0 5.0 0 0 27.36

(0.0) (0.0) (5.5) (0.8) 0.0 (5.6) (1.2) (0.0) (0.8) (0.0) (0.0)

t =  5 0 0 48.6 25.6 2.6 8.0 15.3 0 25.4 0.3 -0.1 50.81

(0.0) (0.0) (3.5) (2.7) (1.3) (3.6) (1.3) (0.0) (2.9) (0.3) (0.3)

t = 10 0 0 40.0 41.8 1.5 1.5 15.3 0 41.3 0.5 0.0 85.62

(0.0) (0.0) (3.1) (3.3) (1.5) (4.1) (1.7) (0.0) (3.4) (0.3) (0.5)

t = 20 0 0 31.8 56.1 0.8 -2.9 14.2 0 55.0 0.8 0.3 145.82

(0.0) (0.0) (3.3) (5.4) (1.5) (6.2) (1.9) (0.0) (5.3) (0.3) (0.4)

t = 30 0 0 29.3 59.1 2.6 -3.1 12.1 0 58.2 0.7 0.2 174.01
(0.0) (0.0) (3.2) (5.1) (1.4) (5.2) (1.7) (0.0) (5.0) (0.3) (0.2)

t = 40 0 0 29.9 62.5 2.8 -7.6 12.5 0 62.0 0.5 0.0 163.98
(0.0) (0.0) (3.3) (5.8) (1.8) (6.0) (1.9) (0.0) (5.8) (0.2) (0.1)

Hours

t =  1 0 20.0 0.6 68.5 2.2 8.2 0.6 58.3 0.0 10.2 0 323794.31
(0.0) (1.0) (0.3) (5.6) (4.1) (2.4) (0.2) (5.5) (0.0) (0.4) 0.0

t =  5 0 19.3 0.4 70.7 2.1 7.4 0.1 64.3 0.2 6.1 0.0 315778.76
(0.0) (1.0) (0.3) (6.0) (4.5) (2.6) (0.4) (6.1) (0.1) (1.2) (0.0)

t = 10 0 20.3 0.2 69.5 2.7 6.9 0.5 64.2 0.2 5.1 0.0 335181.72
(0.0) (1.0) (0.2) (5.9) (4.3) (2.4) (0.4) (5.8) (0.2) (0.5) (0.0)

t = 20 0 20.3 0.1 69.4 3.1 6.3 0.9 63.4 0.3 5.7 0.0 332917.60
(0.0) (1.1) (0.2) (6.6) (4.7) (2.7) (0.5) (6.4) (0.3) (0.6) (0.0)

t = 30 0 20.2 0.5 68.5 2.4 7.6 0.8 64.4 0.5 3.6 0.0 297086.47
(0.0) (1.0) (0.3) (6.3) (4.3) (2.9) (0.5) (6.5) (0.3) (0.8) (0.0)

t = 40 0 21.9 0.5 68.9 2.5 5.7 0.5 67.7 0.4 0.9 0.0 243520.82
(0.0) (1.2) (0.3) (7.1) (4.9) (2.9) (0.5) (7.2) (0.2) (0.8) (0.0)

Table A4

Baseline Model, Sample of Whites with High Education

Contribution to Variance Breakdown of 'Composite'

Decomposition of Cross-Sectional Variance in Earnings, Wage, and Hours in Levels at Different t (Potential Experience)

Entries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage, and hours for a cross section of simulated individuals 
with potential experience t.  The contribution is expressed as a percentage of the variance in the basecase. In the basecase we simulate the full estimated model. To 
compute the contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for all t. We then compute the variance of 
the appropriate variables at the specified value of t. The difference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the 
contributions don't sum up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the initial draw of ωi1 and the 

subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours components, unemployment shocks, and job change shocks. In 

columns VIII through XI we decompose Column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with var(ξ) set to 0, X is the 
marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI is the marginal contribution of job changes with Var(ξ) and 
Var(υ) set to 0, and no unemployment. Column XII is the cross-sectional variance of simulated earnings, wage, and hours, across individuals with potential 
experience t. Bootstrap standard errors are in parentheses.
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Figure A1
Decomposing the Experience Profile of Wages

Baseline Model, Sample of Whites with Low Education

The figure displays the model’s decomposition of wage growth over a career (or the 
experience profile of log wages) into the contributions of job shopping (the mean value of 
the job-specific wage component ν), the accumulation of tenure (the contribution of the 
mean value of tenure on the wage experience profile), and the accumulation of general 
human capital.
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Figure A2
Decomposing the Experience Profile of Wages

Baseline Model, Sample of Whites with High Education

The figure displays the model’s decomposition of wage growth over a career (or the 
experience profile of log wages) into the contributions of job shopping (the mean value of 
the job-specific wage component ν), the accumulation of tenure (the contribution of the 
mean value of tenure on the wage experience profile), and the accumulation of general 
human capital.
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Figure A3
Mean Response of Key Variables to Various Shocks at t=10

for Sample of Whites with Low Education

(a) Log Earnings Response

Potential Experience (t)

(b) Log Wage Response

Potential Experience (t)

(c) Log Hours Response

The figure displays the response of the mean of log earnings, log wage, and log hours to various shocks that 
are imposed when potential experience t = 10. The shocks are an unemployment shock, a job change shock, a 
one-standard-deviation shock to the autoregressive component of wages, a job change shock accompanied by 
a one-standard-deviation shock to the job-specific wage component, and a job change shock accompanied by 
a one-standard-deviation shock to the job-specific hours component. To construct the point estimates, we first 
use the model to simulate a large number of individuals through t = 9. We then impose the shock indicated in 
the figures in period 10 on all individuals. After that, we continue the simulation in accordance with the model. 
The panels in the figure show the mean paths of log earnings, log wages, and log hours relative to the base 
case. The base case represents the mean of the simulated paths in the absence of the specified intervention in 
period 10.
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Figure A4
Mean Response of Key Variables to Various Shocks at t=10

for Sample of Whites with High Education
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(a) Log Earnings Response

(b) Log Wage Response

Potential Experience (t)

(c) Log Hours Response

The �gure displays the response of the mean of log earnings, log wage, and log hours to various shocks that are imposed 
when potential experience t = 10. The shocks are an unemployment shock, a job change shock, a one-standard-deviation 
shock to the autoregressive component of wages, a job change shock accompanied by a one-standard-deviation shock to 
the job-speci�c wage component, and a job change shock accompanied by a one-standard-deviation shock to the job-
speci�c hours component. To construct the point estimates, we �rst use the model to simulate a large number of individu-
als through t = 9. We then impose the shock indicated in the �gures in period 10 on all individuals. After that, we continue 
the simulation in accordance with the model. The panels in the �gure show the mean paths of log earnings, log wages, and 
log hours relative to the base case. The base case represents the mean of the simulated paths in the absence of the speci-
�ed intervention in period 10.

Potential Experience (t)

−.
2

−.
1

0
.1

.2

0 10 20 30 40

−.
4

−.
2

0
.2

0 10 20 30 40

jga22
Typewritten Text
9



.8
.9

1
1.

1
1.

2

0 10 20 30 40
Potential Experience (t)

Figure A5
Sample of Whites with Low Education

(b) Response of Cross−Sectional Variance of Log Earnings
to Various Shocks at t=10
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(a) Response of Cross−Sectional Variance of the First
Difference of Log Earnings to Various Shocks at t=10

Panel (a) in the figure displays the response of the ratio of var(earnit – earni,t-1) to the 
baseline variance for the model, to various shocks that are imposed when potential expe-
rience t = 10. See note in Figure 3. Panel (b) displays the response of the ratio of 
var(earnit) to the baseline variance for the model.
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Figure A6

Sample of Whites with High Education

(b) Response of Cross−Sectional Variance of Log Earnings
to Various Shocks at t=10
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(a) Response of Cross−Sectional Variance of the First
Difference of Log Earnings to Various Shocks at t=10

Panel (a) in the figure displays the response of the ratio of var(earnit – earni,t-1) to the 
baseline variance for the model, to various shocks that are imposed when potential expe-
rience t = 10. See note in Figure 3. Panel (b) displays the response of the ratio of 
var(earnit) to the baseline variance for the model.
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Web Appendix B: Results for the Multinomial Specification
of Employment Transitions and Job Changes

10.1 Model Estimates, Marginal Effects, and Goodness of Fit

In this section, we provide a brief discussion of the model estimates, focusing on the coeffi cients

in equations (19) and (20) for EES∗
it and EE

Q∗
it and the implied estimates of the average marginal

effects of the various variables on Prob(EE = 1), Prob(JC = 1), and Prob(EEQ = 1). The

marginal effects are computed using simulated data from the model. They depend on the variables

and coeffi cients in both (19) and (20).51

The coffi cients relating EES∗ to t− 1 and (t− 1)2 show a mild decline until t− 1 is 13 and then

increase. Since min(EDt−1, 9) and TENt−1 both enter with positive coeffi cients and are rising over

the first few years in the labor market, the overall relationship between EES∗ and t is weak. The

experience profile of EEQ∗ shows a mild increase up to about t− 1 = 9 and then declines.

The coeffi cient on min(EDt−1, 9) is .099 (.015), indicating modest positive duration dependence

in the odds of remaining employed. The marginal effect of 1 extra year on EE is .0044. TENt−1

also has a modest positive effect on EE. BLACK is negative and significant and EDUC is positive

and significant. wage
s

t has a small negative coeffi cient on EE
S∗. The job-specific wage component,

υt−1 has a positive coeffi cient of .202 holding wage
s

t constant, and a total effect of .086.

The coeffi cient on wagest is small and negative: -.116 (.096). From the point of view of job

mobility, one would expect wage
s

t to be positive, since γ
EES

ws is also the coeffi cient on wage
′
t in the

EEQ∗ equation (we impose equality of these coeffi cients). However, all variables that influence wage
′
t

−wagest also have a separate influence on EES∗− EEQ∗. In any event, γ̂EE
S

ws is not statistically

significant and the implied average marginal effect of wage
′
t on the EE probability is small.

EEQ∗ initially rises and then falls with t − 1, holding everything else constant. BLACK

reduces the value of changing jobs relative to leaving employment, while education raises it. The

job-specific wage component υ
′
t has a large positive effect on EE

Q∗, .884 (.168).

51We simulated 27,120 careers (10 for each member of the sample). We then estimated probit models for EE = 1,
JC = 1, and EEQ = 1 that include all observed and unobserved variables that appear in (19) and/or (20). The
columns of Web Appendix Table B1 labeled “Marginal Effects, Multinomial Model”report average partial derivatives

holding the distributions of the observed variables as well as wage
′

t, wage
s

t , υ
′
j′(t), υj(t−1), µ and η constant. These

are approximate estimates because the true reduced forms determining EE, JC, and EEQ are not probits with an
index that is linear in the underlying variables. The use of the simulated data provides an easy way to condition
the distributions of the variables on employment in the previous period. The reported marginal effects for υ′j′(t) and

υj(t−1) are the sum of the direct effects holding wage
′

t and wage
s

t constant and the indirect effects operating through
the wage terms.
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The heterogeneity term µ raises EES∗ and lowers EEQ∗ by roughly .24 and the component η

has a substantial positive effect on EEQ∗ and essentially no effect on EES∗.

The bottom panel of the first page of Web Appendix Table B1 reports the average marginal

effect of each variable on Prob(EE = 1), Prob(JC = 1), and Prob(EEQ = 1). For comparison,

we also report average marginal effects for the baseline model computed from simulated data in

the same manner that the marginal effects for the multinomial model are computed. They tend

to be about 3/4 as large as the derivatives at the mean of EE and JC that are reported in Table

2.52 There are some differences in the marginal effects across the two models. Sampling error

undoubtedly contributes to the differences, which tend to be largest when the standard errors of

the parameters underlying the marginal effects in the case of the baseline model are largest. The

separate effects of wage
′
t and wage

s
t are poorly identified given the presence of TENt−1, υj(t−1),

and υ′j′(t) in the model. However, the effect of a simultaneous increase in both of these variables

on EE is very small. This is consistent with the finding that EE is insensitive to wages in the

baseline model. The effect of an extra year of employment duration on EE is substantial (relative

to the mean of EE). TENt−1 has a substantial negative effect on JC in both models. BLACK

has a substantial negative effect on EE (relative to the mean) and a small positive effect on JC.

EDUC increases employment but its effect on JC is small and varies in sign across the models.

The job component υj(t−1) reduces JC and job offer υ′j′(t) raises JC in both models, but the relative

magnitude of the effects differs between the two models. The standard deviation of υj′(t) is larger

in the baseline model.

Web Appendix Table B1, columns 3b and 4b, present estimates and standard errors for the

UE, wage, hours, and earnings equations when they are estimated jointly with (19) and (20). The

estimates are very close to the results using the baseline specification, so we do not discuss them

here. However, it is worth highlighting the fact that the coeffi cient on µ in the wage equation is

larger in the multinomial case than in the baseline model: .152 versus .076. This is balanced by

the fact that the variance of the initial condition for the job-specific wage component, υi1, is lower

in the multinomial case. We would not want to make too much of these differences given standard

errors and the fact that we have found that the coeffi cient on µ is somewhat sensitive to model

specification.

We have compared the experience profiles of a number of key variables implied by the multino-

mial model (not reported) to the corresponding prediction of the baseline model and the 95%

confidence interval estimates from the PSID that are displayed in Figure 2. The predictions of

the two models are similar, and for the most part, the multinomial model fits the data reasonably

52About half of the difference is because the mean of EE is higher and the mean of JC is lower in the simulated
data than in the PSID data. The simulated data are for a 40-year career for each PSID sample member, while the
means in the PSID are for the part of the career for which data are available.
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well. The close correspondence of the point estimates and the bootstrap means reported in Table

B1 suggests that there is little bias. However, as we note in the text, we did have more numerical

problems estimating the multinomial model.

Impulse Response Functions and Variance Decompositions

Web Appendix Figures B2 and B3 report the time path of the effects of various shocks on the mean

of earnings, wages, and hours, and the variance of the first difference of earnings and the variance

of the cross section of earnings. The patterns are remarkably similar to those reported in Figures

3 and 4 for the baseline model. The one notable difference is that the effect of an unemployment

shock on the variance of the first difference of earnings is more persistent in the multinomial model.

Web Appendix Table B2 reports the decomposition of the variance of lifetime earnings, wages,

and hours. Qualitatively, the results are similar to those for the baseline model, in that shocks

associated with employment and job mobility play a very large role. They account for 30.1%,

38.0%, and 54.3% of the variance of lifetime earnings, lifetime wage rates, and lifetime hours. These

values are large, but are smaller than the baseline estimates. On the other hand, the permanent

heterogeneity components η and especially µ play a more important role than in the baseline model,

with µ accounting for 21.1% of the variance in earnings and 10.9% of the variance in wages. The

larger contributions of µ stem from fact that the factor loading δwµ is larger in the multinomial

model than in the baseline model. The combined variance contribution of η, µ, EDUC, and the

initial draw ωi1 of ωit and υi1 of υit are 66.6% for lifetime earnings, 54.8% for lifetime wages, and

42.2% for lifetime hours.
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Column 1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d

Variable Parameter
Point 

Estimate
Bootstrap 

Mean
Standard 

Error
Parameter

Point 
Estimate

Bootstrap 
Mean

Standard 
Error

Parameter
Point 

Estimate
Bootstrap 

Mean
Standard 

Error

(cons) γEES
0 0.614 0.551 (0.122) γEEQ

0 -0.564 -0.634 (0.165) γUE
0 1.067 0.896 (0.325)

(t-1) γEES
t -0.040 -0.026 (0.013) γEEQ

t 0.011 0.020 (0.014) γUE
t -0.108 -0.085 (0.035)

(t-1)2/100 γEES
t2 0.140 0.100 (0.035) γEEQ

t2 -0.063 -0.077 (0.042) γUE
t2 0.336 0.277 (0.122)

min(EDt-1,9) γEES
ED 0.099 0.103 (0.015)

TENt-1 γEES
TEN 0.053 0.044 (0.014) γEEQ

TEN -0.046 -0.041 (0.016)

BLACK γEES
BLACK -0.233 -0.223 (0.073) γEEQ

BLACK -0.100 -0.095 (0.091) γUE
BLACK 0.389 0.331 (0.205)

EDUC γEES
EDUC 0.026 0.021 (0.008) γEEQ

EDUC 0.037 0.032 (0.011) γUE
EDUC 0.047 0.038 (0.022)

wages
t γEES

ws -0.116 -0.113 (0.096)

wage't γEEQ
wage' -0.116 -0.113 (0.096)

υt-1 δEES
υ-1 0.202 0.174 (0.172)

υ't δJC
υ 0.884 0.863 (0.168)

μ δEES
μ 0.264 0.294 (0.065) δJC

μ -0.227 -0.234 (0.074) δUE
μ 0.113 0.102 (0.152)

η δEES
η -0.039 -0.058 (0.057) δJC

η 0.388 0.362 (0.059) δUE
η 0.293 0.238 (0.148)

Variable

EE JC EEQ UE EE JC EEQ UE
(t-1) -0.0003 -0.0006 -0.0006 -0.0046 0.0004 -0.0030 -0.0029 -0.0032
min(EDt-1,9) 0.0044 -0.0082 -0.0071 0.0012 0.0006

TENt-1 0.0028 -0.0084 -0.0085 -0.0082 -0.0085

BLACK -0.0122 0.0117 0.0084 0.0996 -0.0067 0.0036 0.0014 -0.0090
EDUC 0.0019 0.0012 0.0015 0.0105 0.0023 -0.0027 -0.0021 0.0058
wages

t -0.1002 -0.0244 0.0016 0.0034 0.0009

wage't 0.0932 0.0228 -0.0043

υt-1 0.0043 -0.0045 -0.0039 -0.0978 -0.0945
υ't 0.0133 0.0693 0.0706 0.0585 0.0572
μ 0.0075 -0.0428 -0.0408 0.0232 0.0129 -0.0085 -0.0054 0.0775
η 0.0054 0.0387 0.0389 0.0682 -0.0209 0.0651 0.0582 0.0251

Table B1 continued on next page.

Table B1
Multinomial Model Estimates, SRC Sample

Marginal Effects, Multinomial Model Marginal Effects, Baseline Model

EES* Equation (Eq. 19) EEQ* Equation (Eq. 20)

Multinomial Model Estimates

UE Equation (Eq. 8)
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Column 4a 4b 4c 4d

Equation / Variable Parameter Point Estimate Bootstrap Mean Standard Error

Wage Equation (Eq. 1 - 5)
(cons) 0.002 0.002 (0.052)

(t-1) γw
t 0.069 0.070 (0.004)

(t-1)2/10 γw
t2 -0.022 -0.023 (0.002)

(t-1)3/1000 γw
t3 0.024 0.025 (0.004)

BLACK γw
BLACK -0.208 -0.208 (0.032)

EDUC γw
EDUC 0.105 0.105 (0.003)

Tenure polynomial Yes

μ δw
μ 0.152 0.156 (0.023)

υt-1 ρυ 0.593 0.597 (0.066)

ευ συ 0.261 0.270 (0.008)

ευ1 συ1 0.089 0.085 (0.014)

ωt-1 ρω 
(i) 0.908 0.908 (0.024)

1-Et γω1-Et -0.120 -0.125 (0.013)

1-Et-1 γω1-Et-1 0.037 0.041 (0.017)

εω σω 0.095 0.090 (0.005)

εω1 (Black, Low Educ) σω1 
(i) 0.035 0.084 (0.030)

εω1 (Black, High Educ) σω1 
(i) 0.068 0.100 (0.030)

εω1 (White, Low Educ) σω1 
(i) 0.079 0.106 (0.012)

εω1 (White, High Educ) σω1 
(i) 0.112 0.122 (0.013)

Hours Equation (Eq. 9)

(cons) γh
0 -0.432 -0.425 (0.017)

(t-1) γh
t 0.007 0.006 (0.003)

(t-1)2/10 γh
t2 -0.002 -0.002 (0.001)

(t-1)3/1000 γh
t3 0.001 0.001 (0.002)

BLACK γh
BLACK -0.051 -0.051 (0.014)

EDUC γh
EDUC 0.010 0.010 (0.002)

Et γh
E 0.437 0.436 (0.010)

σξ 0.152 0.165 (0.014)

wt γh
w -0.109 -0.106 (0.015)

μ δh
μ 0.086 0.082 (0.013)

η δh
η 0.068 0.071 (0.017)

εh
σh 0.143 0.141 (0.003)

Earnings Equation (Eq. 10)

(cons) γe
0 -0.003 -0.001 (0.029)

wt γe
w (ii) 1.000

ht γe
h 

(ii) 1.000

ρe 0.622 0.623 (0.009)
εe

σe 0.170 0.170 (0.002)

(i) Estimate obtained using additional moment conditions. See discussion in Section 4
(ii) Imposed.

The table presents estimates and standard errors for the multinomial formulation of the model, estimated on the full SRC sample.  Estimates were 
obtained by Indirect Inference, unless indicated otherwise.  The bottom half of the first page of the table displays marginal effects on EE, JC, EEQ and 
UE.  These are computed from data simulated data from the multinomial model or the baseline model, as indicated.  The parameter estimates for the 
baseline model are in Table 2.  The marginal effects of potential experience account for the quadratic term.  The marginal effects of νt-1 and ν't are the 
effect of a one standard deviation change based on the standard deviations for the particular sample.  Parametric bootstrap standard errors are in 
parentheses.  Bootstraps are based on 300 replications.  As explained in Footnote 23 in the paper, the hours equation includes a second constant that 
has no effect on earn*it.  The point estimate of that constant is 0.0521.

Table B1 (cont.)
Multinomial Model Estimates, SRC Sample
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I II III IV V VI VII VIII IX X XI

Variable εe εh εω  Composite η μ EDUC ξ υ E JC

Lifetime Earnings 5.2 1.8 11.0 30.1 1.4 21.1 29.3 8.5 21.0 0.9 -0.4

(0.2) (0.1) (0.9) (2.2) (1.8) (3.6) (2.0) (1.6) (2.0) (0.6) (0.2)

Lifetime Wage 0 0 18.2 38.0 -2.3 10.9 35.2 0 37.2 0.9 -0.1

(0.0) (0.0) (1.5) (2.7) (1.0) (4.2) (3.1) (0.0) (2.9) (0.6) (0.3)

Lifetime Hours 0 3.5 1.0 54.3 17.3 22.0 1.8 50.2 1.4 2.6 0.1

(0.0) (0.2) (0.3) (9.9) (8.5) (6.1) (0.7) (9.6) (0.5) (0.6) (0.1)

Table B2

Multinomial Specification, Full SRC Sample

Contribution to Variance Breakdown of 'Composite'

Entries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings, wage, and hours, and are 
expressed as a percentage of the lifetime variance in the basecase. In the basecase we simulate of the full estimated model. To compute 
the contribution of a particular shock, we simulate the model again, setting the variance of a given shock to zero for all t. We then compute 
the variance of the appropriate variables. The difference relative to the basecase is the contribution of the given shock. Since the model is 
nonlinear, the contributions don't sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of 

the initial draw of ωi1 and the subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours 

components, employment and unemployment shocks, and job change shocks. In columns VIII through XI we decompose Column IV. 
Column VIII shows the marginal contribution of ξ, IX the marginal contribution of υ with var(ξ) set to 0, X the marginal contribution of 
unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI displays the marginal contribution of job changes with Var(ξ) and Var(υ) 
set to 0, and no unemployment. The variance of the levels of lifetime earnings, wages, and hours are 583,458; 87,037; and 245,430,421, 
respectively. Bootstrap standard errors are in parentheses.

Decomposition of Cross-Sectional Variance in Lifetime Earnings, Wage, and Hours (in Levels)
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I II III IV V VI VII VIII IX X XI XII

Variance

Variable / Potential 
Experience εe εh εω  Composite η μ EDUC ξ υ E JC

Earnings

t =  1 11.0 7.5 28.7 11.4 1.3 18.3 21.7 8.5 2.2 0.7 0 128.84

(0.3) (0.3) (2.8) (1.7) (0.8) (3.1) (1.1) (1.5) (0.6) (0.1) 0.0

t =  5 14.3 6.6 19.4 22.1 2.0 14.1 21.5 8.0 15.7 -0.2 -1.4 276.62

(0.6) (0.3) (1.5) (1.8) (1.1) (2.8) (1.2) (1.4) (1.5) (0.6) (0.2)

t = 10 15.9 6.9 15.4 25.3 1.5 14.4 20.7 8.1 18.5 0.1 -1.5 476.36

(0.6) (0.4) (1.1) (1.9) (1.2) (2.6) (1.2) (1.4) (1.7) (0.6) (0.2)

t = 20 15.1 7.5 14.2 27.4 1.3 14.2 20.4 8.1 19.5 0.5 -0.6 758.41

(0.8) (0.4) (1.1) (1.9) (1.2) (2.8) (1.2) (1.4) (1.7) (0.4) (0.2)

t = 30 14.6 7.1 13.6 29.1 1.8 13.0 20.7 7.3 21.6 0.4 -0.2 787.80

(0.7) (0.4) (1.1) (2.0) (1.3) (3.0) (1.3) (1.4) (1.8) (0.3) (0.1)

t = 40 15.4 6.6 13.6 29.5 1.8 12.8 20.3 8.1 21.4 0.2 0.0 793.42

(0.7) (0.4) (1.1) (2.0) (1.5) (2.9) (1.3) (1.5) (1.9) (0.2) (0.1)

Wage  

t =  1 0 0 55.4 4.4 0 13.4 26.8 0 4.4 0 0 17.50

(0.0) (0.0) (4.2) (1.2) 0.0 (3.9) (1.3) (0.0) (1.2) 0.0 0.0

t =  5 0 0 37.3 26.8 -0.2 9.3 26.8 0 29.2 -1.0 -1.4 35.51

(0.0) (0.0) (2.7) (2.0) (0.5) (3.1) (1.6) (0.0) (2.3) (0.7) (0.3)

t = 10 0 0 30.1 34.6 -0.7 9.0 27.1 0 36.0 -0.3 -1.0 57.63

(0.0) (0.0) (2.1) (2.2) (0.7) (3.1) (2.0) (0.0) (2.4) (0.8) (0.3)

t = 20 0 0 26.6 40.1 -2.1 8.5 26.9 0 39.5 0.8 -0.1 89.29

(0.0) (0.0) (1.9) (2.7) (0.8) (3.4) (2.3) (0.0) (2.7) (0.6) (0.2)

t = 30 0 0 24.7 42.1 -0.4 7.1 26.5 0 41.0 1.0 0.2 99.88
(0.0) (0.0) (1.8) (2.7) (0.8) (3.4) (2.2) (0.0) (2.8) (0.4) (0.2)

t = 40 0 0 25.9 42.8 -1.2 5.5 26.9 0 42.3 0.5 0.1 107.60
(0.0) (0.0) (2.0) (2.8) (0.8) (3.4) (2.2) (0.0) (2.8) (0.3) (0.1)

Hours

t =  1 0 32.5 1.9 45.4 7.0 10.3 2.9 34.8 0.1 10.5 0 355357.43
(0.0) (1.4) (0.4) (5.9) (3.7) (2.8) (0.3) (5.9) (0.0) (0.4) 0.0

t =  5 0 33.1 1.3 47.2 9.8 7.7 0.8 36.6 0.2 10.1 0.3 362262.71
(0.0) (1.5) (0.4) (6.0) (4.0) (2.9) (0.4) (6.0) (0.3) (1.1) (0.1)

t = 10 0 33.6 1.5 45.5 9.7 9.3 0.5 37.6 0.4 7.2 0.3 376614.68
(0.0) (1.5) (0.4) (5.7) (3.9) (2.8) (0.4) (5.8) (0.4) (0.6) (0.1)

t = 20 0 34.0 1.0 44.7 9.1 10.1 1.0 38.3 0.9 5.3 0.2 370474.13
(0.0) (1.6) (0.3) (6.2) (4.1) (3.0) (0.4) (6.3) (0.4) (0.6) (0.1)

t = 30 0 35.4 1.2 43.3 9.5 9.9 0.7 40.0 0.9 2.3 0.1 338641.25
(0.0) (1.7) (0.3) (6.4) (4.1) (3.0) (0.4) (6.5) (0.5) (0.6) (0.0)

t = 40 0 36.5 1.1 42.8 8.9 10.2 0.5 41.7 0.9 0.2 0.0 305101.97
(0.0) (1.7) (0.3) (6.6) (4.3) (3.0) (0.5) (6.7) (0.4) (0.5) (0.0)

Table B3

Multinomial Specification, Full SRC Sample

Contribution to Variance Breakdown of 'Composite'

Decomposition of Cross-Sectional Variance in Earnings, Wage, and Hours in Levels at Different t (Potential Experience)

Entries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage, and hours for a cross section of simulated individuals 
with potential experience t.  The contribution is expressed as a percentage of the variance in the basecase. In the basecase we simulate the full estimated model. To 
compute the contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for all t. We then compute the variance of 
the appropriate variables at the specified value of t. The difference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the 
contributions don't sum up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined contribution of the initial draw of ω i1 and the 

subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours components, unemployment shocks, and job change shocks. In 

columns VIII through XI we decompose Column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with var(ξ) set to 0, X is the 
marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI is the marginal contribution of job changes with Var(ξ) and 
Var(υ) set to 0, and no unemployment. Column XII is the cross-sectional variance of simulated earnings, wage, and hours, across individuals with potential 
experience t. Bootstrap standard errors are in parentheses.
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Figure B1
Decomposing the Experience Profile of Wages

Multinomial Model, Full Sample

The figure displays the model’s decomposition of wage growth over a career (or the experi-
ence profile of log wages) into the contributions of job shopping (the mean value of the job-
specific wage component ν), the accumulation of tenure (the contribution of the mean value of 
tenure on the wage experience profile), and the accumulation of general human capital.
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Figure B2

Mean Response of Key Variables to Various Shocks at t=10
Multinomial Model, Full Sample

(a) Log Earnings Response

(b) Log Wage Response

(c) Log Hours Response

Potential Experience (t)

Potential Experience (t)

The figure displays the response of the mean of log earnings, log wage, and log hours to 
various shocks that are imposed when potential experience t = 10. The shocks are an unem-
ployment shock, a job change shock, a one-standard-deviation shock to the autoregressive 
component of wages, a job change shock accompanied by a one-standard-deviation shock 
to the job-specific wage component, and a job change shock accompanied by a one-
standard-deviation shock to the job-specific hours component. To construct the point esti-
mates, we first use the model to simulate a large number of individuals through t = 9. We 
then impose the shock indicated in the figures in period 10 on all individuals. After that, we 
continue the simulation in accordance with the model. The panels in the figure show the 
mean paths of log earnings, log wages, and log hours relative to the base case. The base 
case represents the mean of the simulated paths in the absence of the specified intervention 
in period 10.
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Figure B3
Multinomial Model, Full Sample

(b) Response of Cross−Sectional Variance of Log Earnings
to Various Shocks at t=10

1
1.
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Potential Experience (t)

unemployment shock 1 st dev ω shock
job change + 1 st dev ν shock job change + 1 st dev ξ shock
job change shock

(a) Response of Cross−Sectional Variance of the First
Difference of Log Earnings to Various Shocks at t=10

Panel (a) in the figure displays the response of the ratio of var(earnit – earni,t-1) to the baseline 
variance for the model, to various shocks that are imposed when potential experience t = 10. 
See note in Figure 3. Panel (b) displays the response of the ratio of var(earnit) to the baseline 
variance for the model.
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Web Appendix C: Choice of Values for the Variance of Mea-
surement Error in Wages, Hours, and Earnings

In this appendix we discuss our choice of values for σmw, σmh, and σme, the standard deviations

of the measurement error (ME) components in wages, hours, and earnings. We begin with σmw.

Using PSID data, Altonji and Devereux (2000) estimate a measurement error model that assumes

that people report the true value with probability p and the true value plus a normally distributed

measurement error with probability (1 − p).53 The analysis is restricted to workers who are paid

by the hour. They report results for a sample that includes blacks and whites, union and nonunion

members, and men and women. Using their preferred estimation method, σmw = 0.045, which

is not sensitive to model specification. This estimate implies that ME accounts for 51% of the

variance of wage changes of stayers. In our sample, the variance of wage growth for all observations

is 1.32 times the variance for stayers. Consequently, Altonji and Devereux’s estimate implies

that measurement error accounts for about 38.6% (51.0/1.32) of V ar(wage∗i,t+1 − wage∗it). For

a sample of white nonunion men who are paid hourly, their estimate is σmw = 0.03898, which

accounts for 36% of V ar(wage∗i,t+1 − wage∗it) for job stayers. This would translate into about

27% of V ar(wage∗i,t+1 − wage∗i,t). The estimates are a little higher when they assume classical

measurement error rather than assuming that the responses are a mixture of correct responses and

the true values plus measurement error.

However, Altonji and Devereux trimmed their sample by eliminating the bottom and top 1% of

wage change observations for stayers. This is more stringent than restricting wage∗i,t+1−wage∗it to
fall between log(0.2) and log(5), as we do. When they do not trim, their estimate of σmw rises to

.1095, which would account for about 50% of V ar(wage∗i,t+1 − wage∗it). We believe that σmw and

the percentage of the variance accounted for by measurement error would be smaller in our sample

given that we do trim.

Bound et al (2001) survey a number of papers on measurement error that used matched data

on survey responses and firm or government administrative data. That literature does not provide

clear guidance about the measurement error in a reported wage measure such as the one we use.

However, Bound et al (1994) find that measurement error accounts for 30.2% of the variance in the

4-year first difference in the log of earnings divided by hours. Measurement error in this variable is

likely to be larger than measurement error in reported wages. Taken together, the evidence from

Altonji and Devereux and Bound et al (1994) suggests that measurement error accounts for about

35% of V ar(w∗i,t+1−w∗it), which is the point estimate we use. The associated value of σmw is .0843.

53Their focus is on whether wages within a job match are subject to downward nominal wage rigidity rather than
on the dynamics of earnings, wages, and hours over a career. One could incorporate their alternative specifications
of downward nominal wage rigidity within a job into the wage model used in this paper, but we have not pursued
this.

22



We also experimented with alternative estimates based on our own analysis of the PSID. The

evidence is based on the equation

earn∗it = α0 + α1wage
∗
it + α2hours

∗
it + errorit

In the full SRC sample, the OLS estimates of α1 and α2 are .9418 (.0036) and .7661 (.0073),

respectively. If one estimates the above regression by 2SLS using wage∗i,t−2 and hours
∗
i,t−2 as the

instruments for wage∗it and hours
∗
it, the coeffi cient estimates are .9980 (.0048) and 1.0059 (.0225),

which is fully consistent with imposing the coeffi cients of 1.0 as well as the presence of measurement

error. Using the covariances and variances underlying the OLS regression, we solved for the values

of σmw and σmh that explain the discrepancy between the OLS regression coeffi cients and coeffi cients

of 1. The values are σmw = 0.130 and σmw = 0.121. An analysis based on the relationship between

[earn∗it − earn∗i,t−2] and [wage∗it − wage∗i,t−2] implies a similar estimate of σmw.
It is possible that the true coeffi cient relating earn∗it to wage

∗
it differs slightly from 1. For this

reason, we also estimated σmw as the amount of measurement error required to explain the difference

between the OLS and 2SLS estimates of the regression coeffi cient relating earn∗it to wage
∗
it, where

we use the lag of wage∗it as the instrument. The OLS and IV coeffi cient estimates are .9594 (.0043)

and 1.019 (.0047) respectively, and the implied estimate of σmw is .116. We also experiment with

this value.

Turning to hours, Bound et al (1994) find that measurement error contributes about 23% of the

variance in the change in log annual hours. We used 25%, which imples that σmh is .0982. We

also experiment with the value implied by the regression of earn∗it on wage
∗
it and hours

∗
it discussed

above, which is σmh = 0.121.

In the case of log earnings, the evidence cited in Bound et al (2001) suggests that the measure-

ment error accounts for about 25% of V ar(earn∗it − earn∗i,t−1), which corresponds to σme = 0.122.

This is the value we use. Changing this value alters the estimate of persistence of the earnings error

component and the variance of the innovation in eit but has little effect on the other parameters in

the model.

Results for Alternative Values of σmw and σmh

The columns of Table C1 report estimates of the model for alternative values of σmw and σmh.

The values used in each case are given at the top of each column. To facilitate comparison, we

also display the estimates and standard errors for our base case assumptions of σmw = 0.0843

and σmh = 0.0982 in columns Ia and Ib. We focus our discussion on the case σmw = 0.130 and

σmh = 0.121, which is the most different from the base case values we use. Relative to the standard

errors, the changes in the parameters of the EE, UE, JC, earnings, and hours equations are minor.
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There are some offsetting differences in the linear and quadratic terms of the potential experience

polynomials in the EE, UE, and JC equations. The parameters of the wage equation are also

insentive to the measurement error assumptions, with four important exceptions. The coeffi cient

δwµ on the productivity component µi falls from .076 (.036) for the parameter values we chose to

essentially 0 when we use the high values of σmw = 0.130 and σmh = 0.121. The decline in the

importance of the fixed heterogeneity term is accompanied by an increase in ρυ from .693(.050) to

.785, an increase in συ1 from .173 to .257, a decline in σω from .088(.005) to .032, and a decline in

the values of σω1 for the 4 race-education categories. The net effect of these changes is to reduce

the role of the permanent productivity component and the persistent wage component ωit in the

variation of wages across people and the persistence over time. Given that we do not find evidence

of a unit root in the wage process, a value of essentially 0 for δwµ is implausible. For example, the

substantial correlation across siblings and between parents and children in wage rates conditional

on education and race points to a large fixed heterogeneity component that is correlated across

siblings and across generations.54 Furthermore, when σmw = 0.130 and σmh = 0.121 are used, the

lower bound of σ2ω1 ≥ .01 is binding for less educated blacks. For both reasons, we prefer the base

case value for σmw.

A comparison of the estimates using σmw = 0.130 and σmh = 0.098 (column III), and σmw =

0.0843 and σmh = 0.121 (column IV) with the base case establishes that the use of the higher value

of σmw is primarily responsible for differences in the model estimates. This is not surprising given

the structure of the model. The higher value for σmh does lead to a small drop in the standard

deviation of the i.i.d hours shock εhit.

Figure C1 reports impulse responses of earnings, wages, and hours, to various shocks when the

high values σmw = 0.130 and σmh = 0.121 are used. They are almost indistinguishable from Figure

3, with the exception that the effect of a one-standard-deviation shock to ωit is smaller. This

difference is a direct reflection of the larger value for σω in the base case. The response of the

cross-sectional variance of earn∗it and earn
∗
it−earn∗i,t−1 to various shocks is not very sensitive to the

measurement error assumptions (compare Figure C2 to Figure 4).

Table C2 reports the variance decomposition of lifetime earnings, wages, and hours when σmw =

0.130 and σmh = 0.121. The main difference with the results using our preferred estimates of σmw

and σmh (Table 4a) is that the shocks related to job mobility and employment transitions account

for an even larger share than in our base case: 61.1% versus 43.5% for earnings, 65.7% versus 53.5%

for wages, and 76.1% versus 59.2% for hours. This increase is partly due to an increase in the role

of υit. However, it also reflects a decline in the importance of µi in earnings from 15.2% to 2.4%

and a decline from 9.6% to 2.9% in the combined contribution to the earnings variance of the initial

54See Solon (1999) for a survey of the literature on family correlations in economic outcomes.
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draw of ωi1 and the shocks εωit.

In summary, we obtain similar model estimates and impulse response functions when we use

larger values for σmw and σmh than our base case values. The variance decompositions using the

larger values if anything reinforce our conclusion that job mobility and employment transitions

play a large role in the variance of lifetime earnings, wages, and hours. However, they imply

implausibly low values for the combined contribution of the permanent heterogeneity factor µi and

for the autoregressive component ωit in wage rates.

Additional References for Web Appendix C

Altonji, J.G. and P. J Devereux (2000), “The Extent and Consequences of Downward Nominal

Wage Rigidity”, in (ed.) Research in Labor Economics, Volume 19, Emerald Group Publishing

Limited. 383-431

Bound, J., C. Brown, G.J. Duncan and W. L. Rodgers (1994). “Evidence on the Validity of

Cross-Sectional and Longitudinal Labor Market Data”, Journal of Labor Economics, 12(3): 345-368.
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Ia Ib II III IV V VI

Equation / Variable Parameter
σmw = 0.1160 
σmh = 0.0982

σmw = 0.1300 
σmh = 0.0982

σmw = 0.0843 
σmh = 0.1210

σmw = 0.1160 
σmh = 0.1210

σmw = 0.1300 
σmh = 0.1210

E-E Equation

constant γEE
0 1.386 (0.241) 1.277 1.405 1.384 1.371 1.050

(t-1)/10 γEE
t -0.257 (0.155) -0.269 -0.280 -0.255 -0.364 -0.329

(t-1)2/100 γEE
t2 0.110 (0.040) 0.130 0.134 0.110 0.157 0.160

min(EDt-1,9) γEE
ED 0.028 (0.025) 0.024 0.022 0.027 0.046 0.020

BLACK γEE
BLACK -0.154 (0.113) -0.193 -0.233 -0.155 -0.191 -0.144

EDUC γEE
EDUC 0.055 (0.015) 0.061 0.054 0.055 0.041 0.079

wages
t γEE

w
s 0.073 (0.115) 0.143 0.141 0.077 0.159 0.215

μ δEE
μ 0.297 (0.127) 0.281 0.304 0.297 0.300 0.271

η δEE
η -0.480 (0.095) -0.470 -0.459 -0.483 -0.323 -0.450

U-E Equation

constant γUE
0 1.633 (0.489) 1.604 1.540 1.628 1.443 1.682

(t-1)/10 γUE
t -1.260 (0.565) -1.214 -1.147 -1.262 -0.673 -0.785

(t-1)2/100 γUE
t2 0.339 (0.175) 0.327 0.313 0.339 0.184 0.204

BLACK γUE
BLACK -0.052 (0.247) -0.032 -0.013 -0.053 -0.030 -0.169

EDUC γUE
EDUC 0.026 (0.030) 0.025 0.026 0.026 0.017 0.005

μ δUE
μ 0.311 (0.177) 0.323 0.322 0.310 0.373 0.387

η δUE
η 0.105 (0.171) 0.111 0.114 0.107 0.018 0.043

JC Equation

constant γJC
0 -0.505 (0.211) -0.557 -0.583 -0.504 -0.375 -0.844

(t-1)/10 γJC
t -0.049 (0.181) -0.107 -0.063 -0.049 -0.179 -0.011

(t-1)2/100 γJC
t2 -0.074 (0.048) -0.025 -0.032 -0.075 -0.009 -0.043

TENt-1 γJC
TEN -0.067 (0.023) -0.109 -0.106 -0.067 -0.103 -0.105

BLACK γJC
BLACK 0.026 (0.107) -0.019 -0.088 0.028 -0.072 -0.056

EDUC γJC
EDUC -0.022 (0.013) -0.002 -0.003 -0.021 -0.014 0.011

υj(t-1) δJC
υj(t-1) -0.825 (0.154) -0.669 -0.714 -0.825 -0.702 -0.707

υ'j'(t) δJC
υ'j'(t) 0.490 (0.128) 0.434 0.466 0.490 0.481 0.492

μ δJC
μ -0.068 (0.129) 0.042 0.044 -0.065 -0.050 0.046

η δJC
η 0.538 (0.108) 0.296 0.287 0.534 0.359 0.316

Table C1 continued on next page.

Point Estimates under Alternative Measurement Error Assumptions

Table C1
Estimates of Baseline Model under Alternative Measurement Error Assumptions

Base case

σmw = 0.0843         
σmh = 0.0982
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Ia Ib II III IV V VI

Equation / Variable
σmw = 0.1160 
σmh = 0.0982

σmw = 0.1300 
σmh = 0.0982

σmw = 0.0843 
σmh = 0.1210

σmw = 0.1160 
σmh = 0.1210

σmw = 0.1300 
σmh = 0.1210

Wage Equation
constant 0.001 (0.054) 0.017 0.004 0.001 -0.003 0.036

(t-1)/10 γw
t 0.644 (0.050) 0.648 0.643 0.643 0.651 0.646

(t-1)2/1000 γw
t2 -2.080 (0.268) -2.117 -2.114 -2.077 -2.133 -2.120

(t-1)3/100000 γw
t3 2.260 (0.437) 2.323 2.330 2.257 2.327 2.319

BLACK γw
BLACK -0.224 (0.029) -0.216 -0.210 -0.224 -0.215 -0.217

EDUC γw
EDUC 0.105 (0.003) 0.104 0.105 0.105 0.106 0.103

μ δw
μ 0.076 (0.036) 0.037 0.042 0.076 0.010 0.0002

υt-1 ρυ 0.693 (0.050) 0.764 0.778 0.693 0.769 0.785

ευ συ 0.276 (0.009) 0.270 0.271 0.277 0.269 0.271

ευ1 συ1 0.173 (0.019) 0.226 0.238 0.173 0.234 0.257

ωt-1 ρω 
(a) 0.908 (0.025) 0.908 0.908 0.908 0.908 0.908

1-Et γω1-Et -0.135 (0.013) -0.126 -0.124 -0.133 -0.128 -0.125

1-Et-1 γω1-Et-1 0.048 (0.017) 0.036 0.038 0.048 0.028 0.031

εω σω 0.088 (0.005) 0.056 0.036 0.088 0.054 0.032

εω1  (Black, Low Education) σω1 
(a),(c) 0.154 (0.061) 0.100 0.100 0.154 0.100 0.100

εω1  (Black, High Education) σω1 
(a) 0.237 (0.054) 0.183 0.155 0.238 0.176 0.128

εω1  (White, Low Education) σω1 
(a) 0.260 (0.024) 0.211 0.187 0.260 0.205 0.166

εω1  (White, High Education) σω1 
(a) 0.316 (0.019) 0.278 0.260 0.317 0.273 0.245

Hours Equation

constant γh
0 -0.450 (0.015) -0.443 -0.432 -0.449 -0.443 -0.443

(t-1)/10 γh
t 0.091 (0.024) 0.084 0.083 0.090 0.075 0.079

(t-1)2/1000 γh
t2 -0.301 (0.133) -0.279 -0.276 -0.298 -0.254 -0.273

(t-1)3/100000 γh
t3 0.197 (0.218) 0.169 0.165 0.192 0.147 0.162

BLACK γh
BLACK -0.054 (0.015) -0.054 -0.052 -0.054 -0.052 -0.052

EDUC γh
EDUC 0.011 (0.002) 0.010 0.011 0.011 0.011 0.010

Et γh
E 0.430 (0.011) 0.424 0.423 0.426 0.419 0.416

εξ σξ 0.163 (0.014) 0.180 0.182 0.165 0.181 0.181

waget
lat γh

w -0.081 (0.016) -0.033 -0.023 -0.072 -0.003 0.017

μ δh
μ 0.097 (0.018) 0.068 0.064 0.093 0.065 0.059

η δh
η -0.012 (0.023) -0.023 -0.021 -0.013 -0.009 -0.022

εh
σh 0.141 (0.003) 0.138 0.137 0.128 0.125 0.124

Earnings Equation

constant γe
0 -0.007 (0.001) -0.004 0.007 -0.007 -0.003 -0.008

waget
lat γe

w (b) 1.000 1.000 1.000 1.000 1.000 1.000

hourst γe
h 

(b) 1.000 1.000 1.000 1.000 1.000 1.000

et ρe 0.624 (0.009) 0.637 0.631 0.646 0.661 0.656

εe
σe 0.169 (0.002) 0.164 0.165 0.161 0.155 0.156

(a) Estimate obtained using additional moment conditions. See discussion in Section 4
(b) Imposed.
(c) The value 0.10 is the smallest value allowed in the optimization routine that estimates the model parameters. 

The table presents estimation results for our baseline model estimated on the full SRC sample under alternative measurement error assumptions for 
wages and hours.  Columns Ia and Ib reproduce our base case estimates from Table 2 for comparison (point estimates in bold, standard errors in 
parentheses).  The alternative assumptions for measurement error are indicated in the corresponding column heading.  Estimates were obtained by 
Indirect Inference, unless indicated otherwise.  

Estimates of Baseline Model under Alternative Measurement Error Assumptions 

Alternative Measurement Error Assumptions

Table C1 (cont.)

Base case

σmw = 0.0843         
σmh = 0.0982
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I II III IV V VI VII VIII IX X XI

Variable εe εh εω  Composite η μ EDUC ξ υ E JC

Lifetime Earnings 5.4 1.3 2.9 61.1 -2.4 2.4 29.2 10.2 50.1 1.5 -0.7

Lifetime Wage 0 0 3.8 65.7 -2.4 0.2 32.7 0 65.3 1.1 -0.8

Lifetime Hours 0 2.8 -0.1 76.1 4.2 14.9 2.2 71.6 0.1 4.4 0.0

Entries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings, wage, and hours, and are 
expressed as a percentage of the lifetime variance in the basecase. In the basecase we simulate of the full estimated model. To compute 
the contribution of a particular shock, we simulate the model again, setting the variance of a given shock to zero for all t. We then compute 
the variance of the appropriate variables. The difference relative to the basecase is the contribution of the given shock. Since the model is 
nonlinear, the contributions don't sum up to 100%. We normalize columns I to VII to sum to 100. Column III is the combined contribution of 

the initial draw of ωi1 and the subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours components, 

employment and unemployment shocks, and job change shocks. In columns VIII through XI we decompose Column IV. Column VIII shows 
the marginal contribution of ξ, IX the marginal contribution of υ with var(ξ) set to 0, X the marginal contribution of unemployment spells with 
Var(ξ) and Var(υ) set to 0, and column XI displays the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no 
unemployment.

Table C2
Decomposition of Cross-Sectional Variance in Lifetime Earnings, Wage, and Hours (in Levels)

Baseline Model, Full SRC Sample, Under Alternative Measurement Error Assumption (σ2
mw = 0.13002, σ2

mh = 0.12102)

Contribution to Variance Breakdown of 'Composite'
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I II III IV V VI VII VIII IX X XI 

Variable/Potential Experience εe εh εω  Composite η μ EDUC ξ υ E JC

Earnings

t =  1 9.4 6.0 26.1 35.4 0.3 1.5 21.4 11.7 22.8 0.9 0

t =  5 14.1 4.9 13.0 45.2 0.1 1.3 21.4 11.0 34.6 1.1 -1.6

t = 10 14.4 5.4 6.1 50.5 -0.2 2.2 21.6 10.7 40.0 1.4 -1.7

t = 20 14.4 5.4 3.1 54.5 -0.7 1.9 21.4 9.4 44.5 1.5 -0.9

t = 30 13.7 5.5 1.9 57.8 -0.8 1.0 20.9 10.8 46.5 0.8 -0.3

t = 40 14.0 5.1 1.7 55.0 2.0 2.1 20.2 10.1 44.7 0.3 -0.1

Wage  

t =  1 0 0 37.7 36.1 0 0.0 26.1 0 36.1 0 0

t =  5 0 0 19.2 53.4 -0.1 0.0 27.4 0 54.3 0.7 -1.6

t = 10 0 0 9.6 62.4 -0.5 0.4 28.1 0 62.5 1.2 -1.4

t = 20 0 0 4.2 67.9 -0.7 0.6 28.0 0 66.8 1.7 -0.6

t = 30 0 0 2.9 69.0 0.5 0.3 27.3 0 68.1 1.2 -0.3

t = 40 0 0 2.9 68.2 2.1 0.8 26.0 0 67.9 0.4 -0.1

Hours

t =  1 0 24.8 0.0 60.2 3.4 7.7 3.8 49.3 0.0 10.9 0

t =  5 0 25.9 0.3 61.6 2.9 7.6 1.7 54.4 0.3 7.0 0.0

t = 10 0 26.0 -0.1 61.6 2.8 8.3 1.5 54.4 0.2 7.1 0.0

t = 20 0 27.0 0.1 61.7 2.6 7.7 1.0 55.0 0.0 6.7 0.0

t = 30 0 28.0 -0.1 61.3 2.9 7.0 0.9 58.4 0.1 2.8 0.0

t = 40 0 28.8 -0.1 62.1 0.9 7.1 1.2 61.6 0.1 0.4 0.0

Table C3
Decomposition of Cross-Sectional Variance in Earnings, Wage, and Hours in Levels at Different t (Potential Experience)

Baseline Model, Full SRC Sample, Under Alternative Measurement Error Assumption (σ2
mw = 0.13002, σ2

mh = 0.12102)

Contribution to Variance Breakdown of 'Composite'

Entries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage, and hours for a cross section of simulated 
individuals with potential experience t.  The contribution is expressed as a percentage of the variance in the basecase. In the basecase we simulate the full 
estimated model. To compute the contribution of a particular shock, we simulate the model again, setting the variance of the given shock to zero for all t. We 
then compute the variance of the appropriate variables at the specified value of t. The difference relative to the basecase is the contribution of the given shock. 
Since the model is nonlinear, the contributions don't sum up to 100%. We have normalized columns I to VII to sum to 100. Column III is the combined 

contribution of the initial draw of ωi1 and the subsequent shocks εit
ω. Column IV is the combined contribution of the job match wage and hours components, 

unemployment shocks, and job change shocks. In columns VIII through XI we decompose Column IV. Column VIII is the marginal contribution of ξ, IX is the 
marginal contribution of υ with var(ξ) set to 0, X is the marginal contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI is
the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment.
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Figure C1
Mean Response of Key Variables to Various Shocks at t=10

(a) Log Earnings Response

Potential Experience (t)

(c) Log Hours Response

Potential Experience (t)

(b) Log Wage Response

Baseline Model under Alternative Measurement Error Assumptions

The figure displays the response of the mean of log earnings, log wage, and log hours to 
various shocks that are imposed when potential experience t = 10. The shocks are an 
unemployment shock, a job change shock, a one-standard-deviation shock to the autore-
gressive component of wages, a job change shock accompanied by a one-standard-
deviation shock to the job-specific wage component, and a job change shock accompanied 
by a one-standard-deviation shock to the job-specific hours component. To construct the 
point estimates, we first use the model to simulate a large number of individuals through t 
= 9. We then impose the shock indicated in the figures in period 10 on all individuals. After 
that, we continue the simulation in accordance with the model. The panels in the figure 
show the mean paths of log earnings, log wages, and log hours relative to the base case. 
The base case represents the mean of the simulated paths in the absence of the specified 
intervention in period 10. This figure is based on the alternative measurement error 
assumptions σ2

mw=0.13002, σ2
mh=0.12102.
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Potential Experience (t)

(b) Response of Cross−Sectional Variance of Log Earnings
to Various Shocks at t=10

Potential Experience (t)

Figure C2

(a) Response of Cross−Sectional Variance of the First
Difference of Log Earnings to Various Shocks at t=10

Panel (a) in the figure displays the response of the ratio of var(earnit – earni,t-1) to 
the baseline variance for the model, to various shocks that are imposed when poten-
tial experience t = 10. See note in Figure 3. Panel (b) displays the response of the 
ratio of var(earnit) to the baseline variance for the model.

Baseline Model under Alternative Measurement Error Assumptions
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Web Appendix D: Smoothing of discrete variables in the
baseline model

This section provides additional details on our strategy for smoothing the discrete variables in our

models of earnings dynamics. We focus the discussion on our baseline model, but the smoothing

procedure works similarly in the multivariate version of the model.

Recall that in our baseline model presented in section 2, the discrete (binary) indicators for

employment and job changes, Eit and JCit, are determined endogenously via equations (6), (8),

and (7), and that employment duration, unemployment duration, and tenure (all three also discrete

variables) are determined endogenously by

EDit = Eit · (EDi,t−1 + 1),

UDit = (1− Eit) · (UDi,t−1 + 1), and

TENit = (1− JCit) · Eit · Ei,t−1 · (TENi,t−1 + 1).

Denote the indexes determining EEit, UEit, and JCit in equations (6), (8), and (7) by:

indexEE ≡ Xi,t−1γ
EE
X + γEEED min(EDi,t−1, 9) + γEETENTENi,t−1 + γEEws wage

s

it

+δEEµ µi + δEEη ηi + εEEit ,

indexUE ≡ Xi,t−1γ
UE
X + γUEUDUDi,t−1 + δUEµ µi + δUEη ηi + εUEit , and

indexJC ≡ Xi,t−1γ
JC
X + γJCTENTENi,t−1 + δJCυ′j′(t)υ

′
ij′(t) + δJCυj(t−1)υij(t−1) + δJCµ µi + δJCη ηi + εJCit .

Then, equations (6), (8), and (7) can be rewritten as

EEit = I[indexEE > 0] given Ei,t−1 = 1,

JCit = I[indexJC > 0] given Eit = Ei,t−1 = 1, and
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UEit = I[indexUE > 0] given Ei,t−1 = 0.

The reason we need to smooth the discrete variables in our model is that as the "structural"

parameters appearing in indexEE, indexUE, and indexJC change continuously (leading to continuous

changes in indexEE, indexUE, and indexJC), changes in these indexes can lead to discrete jumps

in the indicators Eit and JCit. To illustrate this, focus on equation (6). For example, continuous

changes in the "structural" parameter γEEX can lead to a change in the sign of indexEE, which leads

to a discrete jump in EEit and thereby on Eit (from 0 to 1 or vice-versa). These discontinuities

in Eit (as a function of parameter γEEX ) then also lead to discontinuities in EDit, UDit, and TENit

(which are functions of Eit).

Now, for any given discrete variable V , let Ṽ denote the "smoothed" version of that variable

(meaning that it is continuous in the "structural" parameters of the model). Our smoothing strategy

essentially replaces the equations for EEit, UEit, Eit, and JCit by their following smoothed versions

(where λ is set to a small value, as discussed in section 4):

ẼEit =
exp( index

EE

λ
)

1 + exp( index
EE

λ
)
· Ẽi,t−1,

ŨEit =
exp( index

UE

λ
)

1 + exp( index
UE

λ
)
· Ẽi,t−1,

Ẽit = Ẽi,t−1 · ẼEit + (1− Ẽi,t−1) · ŨEit, and

J̃Cit =
exp( index

JC

λ
)

1 + exp( index
JC

λ
)
· Ẽit · Ẽi,t−1.

In the above equations, focus again on ẼEit. Note that ẼEit is now a continuous real variable

that takes values in the interval [0, 1], and that continuous changes in parameter γEEX now lead

to continuous changes in ẼEit, and thereby to continuous changes in Ẽit.55 Furthermore, as λ

approaches zero, ẼEit approaches a 0/1 binary indicator.

Then, employment duration, unemployment duration, and tenure are determined by

ẼDit = Ẽit · (ẼDi,t−1 + 1),

ŨDit = (1− Ẽit) · (ŨDi,t−1 + 1), and

55The initial condition of Eit, Ei1, is smoothed in a similar fashion.
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T̃EN it = (1− J̃Cit) · Ẽit · Ẽi,t−1 · (T̃EN i,t−1 + 1).

Since ẼDit, ŨDit, and T̃EN it are continuous functions of Ẽit, the smoothed version of each of

these variables is also continuous in the model’s "structural" parameters.
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I II III IV V VI VII

EtEt‐1 Et(1‐Et‐1) JCt wage~*t hours~*t earn~*t ln(1+wage~*t
2)

(t‐1)/10 0.0017 0.0066* ‐0.0653*** 0.0065 0.0058 0.0008 0.0323**

(0.0060) (0.0030) (0.0100) (0.0070) (0.0090) (0.0120) (0.0110)

(t‐1)2/100 ‐0.001 ‐0.0013* 0.0120*** ‐0.0014 ‐0.0027 ‐0.0038 ‐0.002

(0.0010) (0.0010) (0.0020) (0.0010) (0.0020) (0.0030) (0.0020)

EDt‐1 0.0009** ‐0.0002 0.0013* 0.0014*** 0.0013** 0.0017** 0.0012

(0.0000) (0.0000) (0.0010) (0.0000) (0.0000) (0.0010) (0.0010)

UDt‐1 ‐0.0009 0.05 0.0029 ‐0.0933** ‐0.1493 ‐0.1291 0.0357

(0.0040) (0.0330) (0.0060) (0.0360) (0.0940) (0.1000) (0.0240)

TENt‐1 0.0001 0.0001 ‐0.0041*** ‐0.0013*** ‐0.0011* 0.0005 ‐0.0032***

(0.0000) (0.0000) (0.0010) (0.0000) (0.0000) (0.0010) (0.0010)

wage~*t‐1 0.0221 ‐0.0122*** 0.0107 0.4448*** ‐0.0236 0.1914*** 0.0883

(0.0170) (0.0030) (0.0340) (0.0280) (0.0250) (0.0360) (0.0510)

wage~*t‐2 ‐0.0244*** ‐0.0136 0.0354** 0.3564*** 0.0305 0.2311** ‐0.1025***

(0.0070) (0.0470) (0.0110) (0.0440) (0.0470) (0.0800) (0.0310)

Et‐1Et‐2 0.9178*** ‐0.8024*** 0.1630*** ‐0.0423 ‐0.3218*** ‐0.205 0.0006

(0.0080) (0.0380) (0.0110) (0.0400) (0.0970) (0.1080) (0.0270)

Et‐2Et‐3 ‐0.0127 0.1474* ‐0.0272 ‐0.0801 ‐0.2178 ‐0.1678 ‐0.0116

(0.0110) (0.0720) (0.0160) (0.0690) (0.1320) (0.1500) (0.0400)

Et‐1(1‐Et‐2) 0.7886*** ‐0.6507*** 0.3290*** ‐0.1142 ‐0.5239* ‐0.4107 0.034

(0.0230) (0.1000) (0.0290) (0.1010) (0.2210) (0.2420) (0.0580)

Et‐2(1‐Et‐3) ‐0.0255 0.1417 0.0228 ‐0.0321 ‐0.2625* ‐0.1652 0.0073

(0.0140) (0.0730) (0.0200) (0.0710) (0.1340) (0.1500) (0.0390)

JCt‐1Et‐1Et‐2 ‐0.0158*** 0.0028*** 0.1676*** ‐0.0073 0.0154* ‐0.0068 0.0020

(0.0050) (0.0010) (0.0110) (0.0060) (0.0070) (0.0100) (0.0060)

JCt‐2Et‐2Et‐3 ‐0.0131** ‐0.0008 0.0295*** 0.0138* ‐0.0108 ‐0.0017 0.0058

(0.0040) (0.0020) (0.0090) (0.0050) (0.0060) (0.0090) (0.0040)

hours~*t‐1 0.0453*** 0.0147* ‐0.0554*** ‐0.1146*** 0.3895*** 0.1867*** 0.007

(0.0090) (0.0060) (0.0120) (0.0150) (0.0170) (0.0270) (0.0100)

hours~*t‐2 ‐0.0093 0.0010 0.0539*** ‐0.0233* 0.1571*** ‐0.0531* 0.0215**

(0.0070) (0.0060) (0.0110) (0.0120) (0.0140) (0.0210) (0.0080)

earn~*t‐1 0.0358*** 0.0198*** ‐0.0645*** 0.2064*** 0.0567*** 0.5602*** ‐0.0061

(0.0070) (0.0040) (0.0100) (0.0130) (0.0100) (0.0250) (0.0080)

earn~*t‐2 ‐0.0078 ‐0.0032 0.0281** ‐0.0096 0.0175 0.1067*** ‐0.0014

(0.0050) (0.0040) (0.0090) (0.0090) (0.0100) (0.0180) (0.0080)

(Web Appendix Table E1  continued on next page.)
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I II III IV V VI VII

EtEt‐1 Et(1‐Et‐1) JCt wage~*t hours~*t earn~*t ln(1+wage~*t
2)

wage~*t‐1((t‐1)/10) ‐0.0154 0.0009 0.0261 0.0818** ‐0.0275 ‐0.0029 ‐0.0579

(0.0170) (0.0010) (0.0290) (0.0250) (0.0250) (0.0330) (0.0610)

wage~*t‐1((t‐1)
2
/100) 0.0015 ‐0.0003 ‐0.0037 ‐0.0145* 0.0062 0.0036 0.0081

(0.0040) 0.0000 (0.0060) (0.0060) (0.0060) (0.0080) (0.0150)

wage~*t‐1JCt ‐0.0590*** ‐0.0025** ‐0.4595*** ‐0.1065*** ‐0.0565*** ‐0.1159*** ‐0.1246***

(0.0080) (0.0010) (0.0630) (0.0210) (0.0160) (0.0250) (0.0190)

wage~*t‐2JCt‐1 0.0273* 0.0006 0.0598* ‐0.0951*** 0.0263 ‐0.03 ‐0.1087***

(0.0130) (0.0010) (0.0270) (0.0160) (0.0160) (0.0220) (0.0170)

wage~*t‐2Et‐1 0.0089 0.01 ‐0.0464** ‐0.1512** ‐0.0395 ‐0.1286 0.1474***

(0.0090) (0.0470) (0.0160) (0.0460) (0.0480) (0.0790) (0.0320)

BLACK ‐0.0105* ‐0.0021 ‐0.0148* 0.0002 ‐0.0044 0.0012 ‐0.0123

(0.0050) (0.0030) (0.0070) (0.0050) (0.0090) (0.0120) (0.0080)

EDUC 0.0019*** 0.0007** ‐0.0019* 0.0051*** ‐0.0006 0.0026* 0.0067***

0.0000 0.0000 (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)

constant 0.0425** 0.6392*** 0.0448 0.0442 0.5371* 0.3318 0.0003

(0.0160) (0.1010) (0.0250) (0.1000) (0.2220) (0.2430) (0.0620)

R
2

0.575 0.812 0.142 0.774 0.256 0.674 0.047

EtEt‐1 Et(1‐Et‐1) JCt wage~*t hours~*t earn~*t ln(1+wage~*t
2)

EtEt‐1 1.0000

Et(1‐Et‐1) ‐0.0182 1.0000

JCt 0.0874 0.0118 1.0000

wage~*t ‐0.0903 ‐0.1210 ‐0.0335 1.0000

hours~*t 0.2608 0.1015 0.0317 ‐0.0511 1.0000

earn~*t 0.2705 0.0997 ‐0.0293 0.1552 0.4978 1.0000

ln(1+wage~*t
2) 0.1070 0.0804 0.0622 ‐0.0913 0.0442 0.0175 1.0000  

0.1323 0.0603 0.2545 0.1820 0.2226 0.2965 0.1606

* Sig. at 0.05 level.  ** Sig. at the 0.01 level.  *** Sig. at the 0.001

Web Appendix Table E1  (continued)
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